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Unidirectional drift of fronts under zero-mean force, and broken symmetries of the rate function

R. Bakanas*
Semiconductor Physics Institute, Gostauto 11, 2600 Vilnius, Lithuania

~Received 4 July 2003; published 16 January 2004!

The deterministic front-ratchet effect, namely, the unidirectional transport of the bistable fronts~BFs! under
the additive zero-mean ac forcing, is considered within the piecewise-linear model of the bistable system. Two
different mechanisms underlying the front ratchet, two cases of the broken symmetry of~i! the rate function,
and/or~ii ! the external zero-mean ac forcing are analyzed. Types of unidirectional motion, some versions of the
‘‘unforced’’ migration of BFs, are found in both cases of the travelling~initially propagating! and the static
~motionless! fronts. We show that symmetry breaking in the front ratchet could produce progressive, regres-
sive, and reversal types of the unidirectional motion of traveling BFs. By tuning the parameters of the rate
function the propagation direction of BF exhibits reversal, as a function of the amplitude of the applied ac
forcing. The static BFs, which stay initially at rest, can gain the dc motion discussed if the symmetry of either
the rate function or the applied ac forcing is broken. The adiabatic approximation is used. To perform a
rigorous analytic treatment for the arbitrary strengths of the driving force we assume that the frequency of the
applied ac forcing is small, if compared to the characteristic relaxation rates in the system.

DOI: 10.1103/PhysRevE.69.016103 PACS number~s!: 05.65.1b, 05.45.2a, 82.40.Ck
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I. INTRODUCTION

The ratchet effect, a nonzero net drift of the particles u
der the oscillating zero-mean force~driver!, arises in a large
class of asymmetric systems when driven out of therm
equilibrium @1#. Particles in a periodic potential, lacking th
spatial symmetry, can drift on average in one direction e
if the average of the applied forces is strictly zero. Bo
versions of the stochastic~noisy driver! and deterministic
~regular driver! ratchets are possible and have been discus
at length in Refs.@1#. The soliton ratchet and various mech
nisms underlying the ‘‘unforced’’ dc motion of the solitar
waves in continuous spatially extended systems have b
reviewed in Ref.@2#. Both underdamped and overdamp
sine-Gordon ‘‘kink ratchets’’ have been studied in the exte
sive literature, analytically and by numerical simulatio
too ~see Ref.@3#!. The role of the inertial effects on th
noise-supported dc drift of the kink was recently discus
in Ref. @4#.

The ‘‘front-ratchet’’ effect, namely, the unidirectiona
transport of the elementary ordered structures in a bist
dissipative system, was also discussed, in both cases of
chastic and deterministic driving@5–8#. The evolution equa-
tion of the front under the external fieldf (x,t) reads

ut2uzz2cuz1R~u!5F~ f ;u!, F5r~u! f ~z,t !, ~1!

where the functionu(z,t) describes the steplike field of th
front, z5x2ct is the travelling coordinate, and the ra
function R(u), which characterizes the rate of the transie
processes in the system, has three zeros atu5u1 ,u2 ,u3 ~say,
u1,u2,u3). In the case of the bistable system one has t
R8(u1,3).0, and R8(u2),0, where the prime denotes th
derivative. The action of the external fieldf on the front is
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described by the ‘‘response’’ functionF, which is presented
by the ‘‘multiplicative’’ forcing term on the right hand side
of Eq. ~1!. The ‘‘transfer’’ functionr(u) in the forcing term
F describes the most frequently studied case of the w
parametric ~parametrically stimulated! driving @5–7#. The
shape of the transfer function depends on the externally c
trollable parameter being under the action of the exter
field f . The particular case of the noisy ratchet, namely
noise-supported drift of the fronts under ‘‘multiplicative
noise was examined in Refs.@5–7#, within the cubic polyno-
mial model of the bistable system. A crucial feature of t
‘‘parametric’’ ratchets is that the mean value of the forci
term F is nonzero even if the external forcingf has a zero
mean. One can say that the dc motion discussed, the sh
the mean velocity of the front, comes from the differe
‘‘symmetry’’ of the external forcingf and the response func
tion F which describes the ‘‘actual’’ driving force of the
front. Broadly speaking, the symmetrically oscillating for
f is transformed~modified! into an asymmetrically oscillat-
ing torqueF through the action of the applied fieldf on the
externally controllable parameter of the system. As a con
quence, the averages of the fieldsf and F differ. This pro-
duces a spurious drift, the ‘‘unforced’’ migration of the fron
In the case of the noisy driver this conclusion may be s
stantiated by Novikov’s theorem: the problem of the me
velocity of the disturbed front is reduced to the determinis
equation, which is characterized by the ‘‘renormalize
~modified! rate function~e.g., see in Ref.@7#!. The consid-
ered ratchet effect is purely deterministic, in essence, tha
not associated with the noisy character of the driver. T
mechanisms responsible for the ‘‘unforced’’ migration are
the same physical origin in both cases of the determini
and stochastic driver. Clearly, the mechanism of the ‘‘pa
metric’’ ratchet breaks down if the transfer functionr(u) is a
constant, i.e., in the case of the additive forcing term,F[ f
@5#. Nonetheless, the unidirectional transport of the fro
may take place even in the case of the ‘‘additive’’ zero-me
©2004 The American Physical Society03-1



to
rc

g

le
n-
te

th
n
h

-
o
p

o-
F

t,
r

th

d
ot
ro
tio

in
tiv
r-
y
al

m
ll

th
c-

e
-
m
ti

Fs
bi
tu
ug
la
-

i-
ed

nt
ic

ly
ems
the
by

ant
del
t
ns-
nc-
by
re
ini-
ew
re

ve
died
ms
e
a-
ot

ss
en
ced
e

rnal
, the
d by
ally
cal
are

re-
ered
ribe

ue,
rder
d

he
o-

low

the

by
d in

-

R. BAKANAS PHYSICAL REVIEW E 69, 016103 ~2004!
driving. A zero-mean force could give a net contribution
the front dynamics despite the additive character of the fo
ing term @8,9#.

The ‘‘additive’’ front ratchet ~AFR!, the unidirectional
transport of the bistable fronts under the additive forcin
was already considered in Refs.@5,8#, by the use of the cubic
polynomial approximation of the rate function. By a bistab
front ~BF! we mean one of ‘‘saddle-saddle’’ type. The co
sidered BF separates two stable uniform states of the sys
i.e., it performs the transition between the steady statesu1
and u3 . Similar to the case of the parametric ratchet,
‘‘additive’’ ratchet is more efficient, and the shift of the mea
velocity of the driven BF is more pronounced at hig
strengths of the applied forcingf At low intensities of the
external fieldf which is tractable within the first-order ap
proximation of the perturbation technique, the deviations
the moment velocity of the BF depend linearly on the a
plied forcing f Hence, weak additive driving does not pr
duce the ‘‘spurious’’ drift, the unforced migration of the B
~e.g., see Refs.@5,10#!.

The deterministic version of the ‘‘additive’’ ratche
namely, the unidirectional transport of BFs under the pe
odically oscillating zero-mean forcingf (t) was recently dis-
cussed in Ref.@8#, within the cubic polynomial model of the
system. The calculations, which have been carried out for
arbitrary strength of the applied forcingf (t), showed that the
‘‘pulling’’ effect, the progressive dc motion of BFs, occurre
if the Maxwellian construction of the rate function was n
balanced. This implies that the work of the additive ze
mean driver may be converted into the accelerated dc mo
of a BF if the ‘‘global symmetry’’ of the rate function is
broken. Direct calculations showed that a significant driv
effect could be achieved even in the case of an addi
driver, if the applied forcingf was strong enough. Furthe
more, the ‘‘pulling’’ of the front disappeared for the initiall
static BF, when the Maxwellian construction was strictly b
anced.

The unforced dc motion usually originates in syste
lacking some symmetry, or it comes from an asymmetrica
oscillating zero-mean fieldf (x,t) @1–3#. It is clear enough
that the characteristic features of the directed transport in
AFR must be sensitive to the ‘‘symmetry’’ of the rate fun
tion, i.e., they should depend on the shape of theR2u char-
acteristic, similar to the case of the soliton or string ratch
@2,3#. Evidently, the ‘‘cubic polynomial’’ AFR is very spe
cific, the cubic polynomial rate function satisfies some sy
metry properties, discussed below. Thus, the natural ques
that needs to be addressed is whether the ‘‘pulling’’ of B
the progressive dc motion that occurred within the cu
polynomial model, was a common property, a generic fea
of the considered AFRs. Furthermore, it is not clear eno
whether or not the considered ratchet effect may take p
in the ‘‘globally symmetric’’ case, when the Maxwellian con
struction is strictly balanced. Is it possible to accelerate~on
average! the motionless BF, which stays initially at rest? F
nally, what would be the preferred direction of the unforc
migration in such a ‘‘strictly bistable’’ case?

Unfortunately, the analytically tractable models of fro
ratchets of the ‘‘flexible’’ symmetry are lacking. An analyt
01610
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solution of the driven system with similar but different
shaped rate functions is ordinary not feasible. Thus, it se
reasonable to replace the nonlinearity by linear pieces. In
present paper a ‘‘pseudolinear’’ AFR that is characterized
the piecewise-linear rate functionR(u) is considered. The
piecewise-linear approximation exhibits the most import
features of the bistable system, and provides us with a mo
of the ‘‘flexible’’ symmetry. The motivation of the presen
study is to present a simplified picture of the unforced tra
port of BFs, generated by asymmetrically shaped rate fu
tions. We extend our previous study of the ac driven BFs
a consideration of the ‘‘symmetry breaking’’ in AFRs that a
described by differently shaped rate functions. Both the
tially static and initially propagating BFs are discussed. N
interesting versions of the unforced migration of BFs a
found.

The unidirectional motion of BFs, induced by the additi
zero-mean forcing, as far as we know, has not been stu
in considerable detail as yet. In addition, the mechanis
underlying the ‘‘additive’’ ratchet will also work in the cas
of a parametric ratchet, which is described by a ‘‘multiplic
tive’’ forcing term, but not the reverse. The reverse is n
necessarily true.

The paper is organized as follows. In Sec. II we discu
the model, the front solutions of the quasistatically driv
BF, and the speed equation which describes the unfor
migration of the ac driven BF. Section III deals with th
broken symmetries of both the rate function and the exte
ac forcing. Two separate cases of the symmetry breaking
characteristic features of the directed transport generate
both the asymmetric rate functions and the asymmetric
oscillating zero-mean forcing, are considered. The typi
versions of the unforced migration in the considered AFR
classified. Finally, we summarize the main conclusions.

II. MODEL, APPROXIMATION, AND FRONT SOLUTIONS

The analytic treatment of the disturbed BF usually
quires the use of approximate approaches. In the consid
case of the AFR the perturbative techniques which desc
the particular case of the weak forcingf are of limited use.
The first-order approximation of the perturbation techniq
as noted, leads to the vanishing result. Thus, higher o
approximations off are required to describe the unforce
migration of the ac driven BF. Furthermore, the dc drift, t
shift of the mean velocity of the BF, is more strongly pr
nounced at high strengths of the applied forcingf (t) @8#.
Therefore, to describe the most general case of arbitraryf ’s
we restrict ourselves to the case of the adiabatically s
driving. We assume that the period of the ac forcingT is
large if compared to the characteristic relaxation times in
system~e.g., see Refs.@8,9#!. The domain of validity, a rough
criterion of the adiabatic approximation, may be obtained
the use of the perturbation technique and was presente
Ref. @8#. The criterion readsTf@t, where the parametert
5max$R821(u1),R821(u3)%, stands for the characteristic relax
ation time of the system, and the quantityTf indicates the
period of the rapidly oscillating ‘‘mode’’ of the forcingf (t).
Clearly, the periodically oscillating forcingf (t) may be pre-
3-2
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UNIDIRECTIONAL DRIFT OF FRONTS UNDER ZERO- . . . PHYSICAL REVIEW E 69, 016103 ~2004!
sented as a superposition of the harmonically oscillat
‘‘modes.’’ Evidently, the discussed approximation is exact
the limit Tf→`. The adiabatic approximation is also usef
in another respect: the mechanisms underlying the con
ered AFR may be readily understood by considering the q
sistatic limit. The response of the bistable front to the slow
oscillating forcingf (t) is described by the equation

uzz1c~ t !uz2RF@u; f ~ t !#50, RF5R~u!2 f ~ t !. ~2!

Here, byRF we denote the modified rate function; the p
rameterc(t), defined by the relationc(t)[c@ f (t)#, indicates
the moment velocity of the driven BF, and the ‘‘flexible’’ rat
function R(u) is described by the linear pieces~see, Fig. 1!

R~u!5H a1 ~u2u1!, u,uM

2a2 ~u2u2!, uM,u,um

a3 ~u2u3!, u.um.

~3!

Here the free parameters of the ‘‘basic’’ rate functionR(u)
are defined as follows:u1,uM,u2,um,u3 , and a i.0,
( i 51,2,3). The extremes of the rate function,RM[R(uM)
andRm[R(um), are given by the expressionRM ,m5a2(u2
2uM ,m), and the time-dependent quantitiesv i , which indi-
cate zeroes of the modified rate functionRF , are described
by the relationsv1,35u1,31a1,3f (t) and v25u22a2f (t).
We do not impose any additional restrictions on the para
etersui and a i . Thus, the shape of the rate functionR(u)
may be easily modified through the direct variation of t
adjustable parametersui anda i . Clearly, in the case of the
slowly oscillating ~quasi-static! forcing the response of th
bistable system to the applied forcingf (t) may be treated as
very rapid, almost ‘‘instantaneous’’ one~in the time scale of
the characteristic periodTf of the forcing!. Thus, the charac
teristic parameters of the disturbed front-solution, e.g.,
discussed parametersv1,3, the moment velocityc(t), etc.,
are directly expressed through the ‘‘variable’’f (t). Let us
turn to the front solutions of the disturbed BF.

Thanks to the piecewise-linear character of the rate fu
tion, the method of finding the front solutions is very simp

FIG. 1. The piecewise-linear rate function.
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Similar to the case of the free (f [0) system, both the fron
solution and propagation velocity of the driven BF are fou
by solving the system of ordinary~linear! differential equa-
tions, used in conjunction with the appropriate boundary a
matching conditions~see Ref.@9#!. The quasistatic field of
the ac driven BFu(z,t) must tend to the valuesv1(t) and
v3(t), for z→6`. Without loss of generality we assum
that u(z→2`)→v1 , and u(z→1`)→v3 . This implies
that the propagation velocity of the free, undisturbed BFc0

is described by the relationsc0.0 if SM.2Sm andc0,0 if
SM,2Sm , where the quantitiesSM andSm denote the areas
enclosed byR2u characteristic in the intervals@u1 ,u2# and
@u2 ,u3# of the variableu respectively. More specifically, the
free BF propagates in such a way that the steady stateu1

invades the stateu3 , if the Maxwellian construction is ‘‘posi-
tively’’ disbalanced, namely, if the conditionS[SM1Sm

.0 is fulfilled. Differently, the penetrated state of the fre
BF is u1 if S,0. For the considered case of the pseudolin
rate function~3! we get that

c0>0 if hR>hR
0 , ~4a!

c0<0 if hR<hR
0 , ~4b!

where

hR5gH hR
0 , hR

05Aj 3 / j 1, gH5A2SM /Sm. ~4c!

Here the auxiliary parametershR and hR
0 , defined by the

relationshR52RM /Rm andhR
05hR(c050), indicate the ra-

tio of the extreme values of the rate function. The factorgH
may serve as the ‘‘balance pointer’’: it indicates the ‘‘disba
ance’’ of the Maxwellian construction from the strictly ba
anced situation, when the equal areas ruleSM52Sm is sat-
isfied. More specifically, the considered system is ‘‘strictl
bistable, i.e., the free BF is static~motionless! if the equality
gH51 holds. Relations~4! describe the well known result
the free BF always propagates in such a way that the
stable state is the penetrated one. It will be shown below
the unforced migration of BFs does not satisfy relations~4!,
i.e., the given classification ‘‘scheme’’ breaks down. Mo
exactly, inequalities~4a! and ~4b! do not hold if one substi-
tutesc̄ for c0 into Eq. ~4!, where byc̄ we denote the mean
velocity of the ac driven BF.

The solution of Eq.~2!, the method of finding the fron
solution and the velocityc(t), is quite similar as in the cas
of the free BF~see in Ref.@9#!. Without giving the details of
the calculations, which are straightforward albeit lengthy,
present the front solution, which satisfies the discus
boundary conditions:
3-3



v11~uM2v1!exp~k1z!, z,0
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u~z!5H v21~v22uM !b~w!exp~2wz!sin~q2z2C!, 0,z,zm

v32~v32um!exp@k3~z2zm!#, z.zm.

~5!
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For the sake of brevity we have introduced the abbrevia
w5c(t)/2. The required parameters are described as follo

k1,3~w!52w6Aw21a1,3, q2~w!5Aa22w2, ~6a!

b~w!5$111/u2~w!%1/2, u~w;d1!5
q2~w!

g1~w!
, ~6b!

C5H arctan@u~w!#, u~w!.0

p2arctan@2u~w!#, u~w!,0,

zm5q2
21F~w;a1 ,a3!. ~6c!

The auxiliary functions are given by the expressions

g1,352w1d1,3k1,3~w!,

F~w!5H arctan@Tg~w!#, Tg~w!.0

p2arctan@2Tg~w!#, Tg~w!,0
, ~7a!

where

Tg~w!5 f Sn/ f Cn, f Sn5q2~w!@d1k1~w!2d3k3~w!#,
~7b!

Sn~w!5 f Sn/ f V , f Cn52@q2
2~w!1g1~w!g3~w!#,

~7c!

Cn~w!5 f Cn/ f V , f V5q2
2~w!1g1

2~w!. ~7d!

Here the following denotations have been introduced;d i
5a2 /a i and j i511d i .

The central subject of the present consideration is the
locity of the ac driven BF. Similar to the case of the free B
~see Ref.@9#!, the speed equation of the driven BF is fo
lowed from the matching conditions, by the direct substi
tion of the front solution~5! into the matching equations. I
was shown in Ref.@9# that the propagation velocity of BF
should satisfy the relationucu,cP , where the quantitycP

[2A2R8(u2)52Aa2 indicates the ‘‘marginal’’ velocity of
the ‘‘pulled’’ front. More accurately, the following relation
hold: c→2cP if gH→0, andc→cP if gH→`. To simplify
the expressions we introduce the abbreviations5c(t)/cP .
Hence, the scaled velocity of the driven BFs(t) will satisfy
the relationus(t)u,1. Without going into detail we presen
the required speed equation in two completely equiva
forms,

HS~s;r 1 ,r 3!5hF~ f !, ~8a!

PS~s;r 1 ,r 3!5pF~ f !, PS~s!ª1/HS~s!,
01610
n
s:

e-

-

t

pF~ f !ª1/hF~ f !, ~8b!

where

HS~s![
Sn~s!

exp@2w~s!#sinF~s!
,

hF~ f !5hR

12~11pR! f *

11~11hR! f *
[

RM2 f ~ t !

2Rm1 f ~ t !
, ~9a!

and the sign ‘‘ª ’’ denotes a definition. Here the functio
f * 5 f /DR describes the external forcing, scaled in the un
of the ‘‘height’’ of the rate function,DR5RM2Rm . The
parametersr 1,3 andpR are defined as follows:pR51/hR and
r i5a i /a2 . The unknown functionw(s) in Eq. ~9a! is given
by the following expressions:

w~s!5
sF~s!

Q2~s!
, Q2~s![q2 /Aa25A12s2. ~9b!

From Eq.~9a!, in the conjunction with Eqs.~6a! and ~7!, it
follows that the quantityHS(s;r 1 ,r 3) in the speed equation
~8a! is a function of both the velocitys and the slope param
etersr 1,3. Consequently, Eq.~8a! yields by inversion thats
5s( f * ;hR ,r 1 ,r 3). Thus the moment velocity of the drive
BF s(t)5s@ f * (t);hR ,r 1 ,r 3# depends on the slope param
etersr 1,3 and the ‘‘balance factor’’gH . Thus, the pseudolin-
ear rate functions, taken at the fixed slope parametersr 1 and
r 3 , may be treated as ‘‘similarly shaped’’ ones. The family of
similarly shaped rate functions will exhibit similar drivin
properties of BFs. More specifically, the characteristic fe
tures of the unforced transport generated by the rate fu
tions with the fixed parametersr 1 , r 3 , andhR will strictly
coincide, if the propagation velocity and the external forci
were taken in the scaled units, defined above. This imp
that the similarly shaped rate functions may be treated
equivalent, if the balance parametergH was taken fixed. Fur-
thermore, the following relations hold:

HS~s;r 1 ,r 3!5PS~2s;r 3 ,r 1!, ~10a!

hF~ f * ;hR!5pF~2 f * ;1/hR!. ~10b!

Now, from Eqs.~9! used in conjunction with Eq.~10! imme-
diately follows that the moment velocity of BFs(t) satisfies
the relation

s~ f * ;r 1 ,r 3 ,hR!52s~2 f * ;r 3 ,r 1 ,1/hR!. ~11a!

In addition, the auxiliary functionHS(s) is positive,HS.0.
More exactly, the following relations hold:HS(s→1)→`,
and HS(s→21)→0. As a consequence, from Eq.~8a!, in
conjunction with Eq.~9a!, follows at once that the applied
3-4
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UNIDIRECTIONAL DRIFT OF FRONTS UNDER ZERO- . . . PHYSICAL REVIEW E 69, 016103 ~2004!
forcing should satisfy the conditionf (t), f mx[min$RM ,
2Rm%. Otherwise, using the scaled units we get thatf * (t)
, f mx* [min$(11pR

21),(11hR
21)%. It is easily to see that the

presented inequalities guarantee the ‘‘global’’ stability of t
driven BF: the middle zero pointv2 of the modified function
RF and one of the outer points, eitherv1 or v3 , closely
approach each other in the limitf * →6 f mx* , and coalesce a
this limit. The discussed symmetry property~11a! is illus-
trated in Fig. 2, where the moment velocitys(t), followed
from the speed equation~8a!, is presented for two opposit
cases of the harmonic forcing described by the relat
f * (t)[ f 6* 56 f 0* sinvt. One can see that the oscillations
the velocitys(t), shown by curves (a) and (b), are strictly
opposite, in accordance with Eq.~11a!. As a consequence
the mean velocity of the ‘‘harmonically’’ driven BFs̄ will
satisfy the relation

s̄~r 1 ,r 3 ; f 0* ,hR!52 s̄~r 3 ,r 1 ; f 0* ,1/hR!, ~11b!

where the overbar denotes the average over the period o
forcing, T52p/v. Here and in the following we use th
denotation

Ā[^A&5
1

T E
0

T

dtA~ t !. ~12!

From Eq. ~11a! it follows that relation~11b! holds in any
case of the ‘‘symmetrically’’ oscillating forcing defined th
relation f (t1T/2)52 f (t). For this reason, when conside
ing the directed drift of BFs that are driven by the ‘‘symme
ric’’ ac forcing we shall restrict our consideration to the ra
functions defined by the relationr 1.r 3 . We assume in the
following that the ‘‘asymmetry factor’’gR5r 1 /r 3 satisfies
the conditiongR.1.

III. SYMMETRY BREAKING IN FRONT RATCHETS:
UNIDIRECTIONAL TRANSPORT OF AC DRIVEN FONT

Before analyzing the unforced transport of BFs, genera
by the differently shaped rate functions, let us classify

FIG. 2. The moment velocity of the bistable front driven by t
harmonic forcing f 6* (t)56 f 0* sinvt. The parameter values ar
~solid line a) f * (t)[ f 2* (t), f mx52Rm , r 1510, r 350.1, andhR

59.5; ~dashed lineb) f * (t)[ f 1* (t), f mx5RM , r 150.1, r 3510,
andhR50.105. The rigorous equalityhR(a)5hR

21(b) holds.
01610
n

the

d
e

relevant symmetries of both the rate function and the p
odically oscillating driver. To perform the needed classific
tion we define the rigorously symmetric functionsR(u) and
f (t) as follows:~a! R(u22Du)52R(u21Du) and ~b! f (t
1T/2)52 f (t), whereDu is the arbitrary constant. The pre
sented relations mean that the both discussed functions,R(u)
and f (t), are ‘‘contrasymmetric.’’ Roughly speaking, th
consideredR2u and f 2t dependencies exhibit a ‘‘mirro
image’’ symmetry with respect to the abscissa axis. Both
rate functionR(u) and the forcingf (t) will be referred to as
asymmetric if the relations~a! and~b! are broken. Two sepa
rate cases of the broken symmetry of the rate functionR(u)
and/or the ac forcing~driver! f (t), two different types of the
symmetry breaking in the considered AFR could be iden
fied: ~A! R(u22Du)Þ2R(u21Du), and/or~B! f (t1T/2)
Þ2 f (t). Both lead, as shown below, to a ‘‘rectification’’ o
the moment velocity of the ac driven BF and, as a con
quence, to the front-ratchet effect. We notice that the as
metric driver, defined by relation~B!, is frequently used as
the basic ‘‘impetus’’ in the Brownian motors@1#. Using the
discussed relations we arrive at the following combinatio
of the symmetry breaking in AFRs:~A-b!—the rate function
is asymmetric, the driver is symmetric;~B-a!—the driver is
asymmetric, the rate function is symmetric;~A-B!—both, the
rate function and the driver, are asymmetric. In the pres
report we shall deal mainly with the case~A-b!. Primary
attention will be given to the speed ‘‘rectification’’ generate
by the asymmetrically shaped rate functions. It is easy to
that the cubic polynomial AFR, discussed in Ref.@8#, may be
typified as the case~A-b!. Nevertheless, the cubic polyno
mial rate function is, to some degree, symmetric. Let
specify the symmetry properties of the rate functions m
accurately. It is obvious that the structural asymmetry of
considered~spatially homogeneous! system is masked in the
rate function.

The rigorously symmetric rate function defined by re
tion ~a! implies that the considered system is ‘‘strict
bistable.’’ The equal areas ruleSM52Sm holds; hence, the
free BF is always static in such a ‘‘locally’’ symmetric cas
Clearly, the equal areas rule may be fulfilled too in the oth
case of the asymmetric rate functions defined by relation~A!.
Generally speaking, the rate functions, which satisfy
equal areas condition, may be typified as follows:~1!
Rs(u22Du)52Rs(u21Du) and ~2! Ra(u22Du)Þ
2Ra(u21Du). Hence, the two separate classes of the si
larly shaped rate functions may be identified:~I! $RS%
ªRs(u)1C—thesymmetrically shaped~symmetrical! ones,
and ~II ! $RA%ªRa(u)1C—the nonsymmetrically shaped
~asymmetrical! those, whereC denotes the free constan
Evidently, the criterion of the ‘‘broken symmetry’’~A! may
fulfilled in either case of thesymmetrical(RS) or asymmetri-
cal (RA) rate function. Nevertheless, the peculiarities of t
unidirectional motion of BFs, i.e., the characteristic types
the unforced migration, generated in either case of the s
metrically or the asymmetrically shaped rate function, a
rather different. For instance, the rate functions described
the cubic polynomials are ‘‘symmetrically shaped’’~sym-
metrical! ones. As a consequence, the ‘‘pulling’’ of th
fronts, the particular case of the accelerated dc motion of
traveling ~initially propagating! BFs occurred in that
3-5
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R. BAKANAS PHYSICAL REVIEW E 69, 016103 ~2004!
case@8#. In what follows we shall deal with the most gener
case of the asymmetrical rate functions, which satisfy
relation~II !. The new versions of the directed motion of BF
will be found with the asymmetrical rate functions.

Referring to the particular case of the piecewise-lin
approximation we writeRA(u)[R(u;gRÞ1) and RS(u)
[R(u;gR51). Thus, the symmetry properties of th
pseudolinear rate functions are very transparent; they
‘‘governed’’ by the asymmetry factorgR . We notice that the
rigorously symmetric rate function~a!, which describes the
particular, very specific case of the symmetrical rate fu
tions, is defined by the relationshR51 andgR51.

In closing the discussion of the symmetry properties
the considered AFR we summarize that two separate cas
the broken symmetry of~i! the rate function, and~ii ! the
external driver could be identified. In addition, two differe
classes of the asymmetric rate functions may be typified~I!
symmetrical ~symmetrically shaped! ones, and~II ! asym-
metrical ~asymmetrically shaped! those. Let us turn to the
unforced transport of the ac driven BFs, generated by
asymmetrically shaped rate functions. As assumed, we s
deal with the similarly shaped rate functions that satisfy
relationgR.1.

A. Unidirectional transport generated by asymmetrically
shaped rate functions

Speed equation~8a! is transcendental, the velocit
s@r 1 ,r 3 ; f * (t)# is not expressible as function of the param
etersr 1 ,r 3 ,gH and the forcing termf * (t). Thus, the speed
equation was examined numerically, the numerical simu
tions have been used to describe the unforced migratio
BFs. As a preliminary let us discuss the typical versions
the directed drift stimulated by the periodic square-pu
forcing,

f * ~ t !5H f 0* , nT,t,~n11/2!T

2 f 0* , ~n11/2!T,t,~n11!T,

n50,61,62,... . ~13!

The s̄2 f 0* characteristics of the ac driven BF, followin
from speed equation~8a!, are shown in Fig. 3, for the differ
ent ‘‘balance’’ parametersgH . The strengths of the applie
forcing and the slope parameters were taken in accorda
with the relations 0< f 0* , f mx* and gR.1, discussed above
The s̄2 f 0* characteristics shown by dashed linesa and b
describe the ‘‘standard’’ pulling effect, the progressive
motion of the traveling (s0Þ0) BF, previously discussed b
use of the cubic polynomial rate function@8#. The progres-
sive dc motion implies that the average velocity of the tra
eling BF was increased due to the action of the exter
zero-mean forcing on the front. The discussed type of
rected drift takes place even in the case of the symmetric
shaped rate functions, when the asymmetry factorgR equals
unity. Nevertheless, the rigorously symmetric rate functi
which describes the particular case of the initially static B
does not exhibit the dc motion discussed. Quite similar to
case of the cubic polynomial model, the static BF, wh
stays initially at rest, cannot gain the directed motion d
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cussed if the relationsgR51 andhR51 are fulfilled. Differ-
ent types of the directed motion, the new versions of
unforced migration, are shown by solid curves 1, 2, and
They could be typified as follows: the progressive dc mot
of the static BF~curve 1!, the reversal migration of the trav
eling BF ~curve 2!, the stopping of the traveling BF~curve
3!. We stress that the considered versions take place on
the case of the asymmetrically shaped rate functions, defi
above. The symmetrical rate functions do not exhibit t
discussed types of the unforced migration, very similar to
case of the cubic polynomial model. More specifically, t
curves~1, 2, and 3! shown in the figure become more an
more flattened and approach the segment@0,1/2# of the
straight line described by the equations̄50, if the asymme-
try factorgR tends to unity. Thes̄2 f 0* characteristics shown
by curves 1 and 3 demonstrate that the two check points,
‘‘critical’’ values of the balance factorgH could be identified,
namely,gH51 andgH51/hR

0 . Both of these possess a sim
larity, namely, they are related to the motionless BF. The fi
deals with the initially static BF, whereas the second sta
for the other limiting case of the ‘‘motionless’’ BF that i
driven at the maximal strength of the forcing,f 0* 5 f mx* . The
latter implies that the average velocity of BF, which at t
beginning was propagating at some fixed non-zero velo
s0 , was reduced to zero, i.e., the following relationss0Þ0
and s̄( f mx* )50 were satisfied. The novel types of directe
motion satisfy the following relations:~1! gH51—the accel-
erated dc motion of the static BF~curve 1!; ~2! 1.gH

.(hR
0)21—the reversal migration of the travelling BF~curve

2!; ~3! gH5(hR
0)21—the decelerated drift, followed by th

stopping effect~curve 3!. One can see that the character
the s̄2 f 0* dependencies, shown by curves 3 andb, is rather
different. The interval of the intermediate valuesgH that
separate the curves 3 andb depends on the asymmetry fact
gR and is relatively small. In addition, the ‘‘intermediate’’s̄
2 f 0* characteristics are nonmonotonic functions of the a
plitude f 0* ~see dotted curvec in Fig. 3!. It should be noted

FIG. 3. The characteristic types of the unidirectional moti
induced by the periodic square-pulse forcing. The slope parame
arer 1510 andr 350.1. Other parameter values are~dashed linea)
gH51.25 (hR.hR

0); ~solid line 1! gH51 (hR5hR
0); ~solid line 2!

gH50.7 (hR
0.hR.1); ~solid line 3! gH'0.32 (hR51); ~dashed

line b) gH50.25 (hR,1); ~dotted linec) gH50.29 (hR,1). The
mean velocity is presented in arbitrary units,s̄0(a)51.
3-6
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UNIDIRECTIONAL DRIFT OF FRONTS UNDER ZERO- . . . PHYSICAL REVIEW E 69, 016103 ~2004!
that the novel types of the directed motion take place in
case of the symmetrically oscillating forcing. This concl
sion may be substantiated in the following way.

First, the obvious relations hold:f mx52Rm if hR.1, and
f mx5RM if hR,1. As assumed, the asymmetry factorgR

satisfies the relationgR.1, thus, we get thathR
0.1, in ac-

cordance with Eq.~4c!. Now is easily to conclude that fol
lowing relations are fulfilled:~i! smx

2 51 andsmx
1 .21 if hR

.1; and ~ii ! smx
2 ,1 and smx

1 521 if hR,1, where smx
6

[s(6 f mx* ). Hence, for the particular case of the initial
static BF we obtain thats̄050, ands̄mx.0, where the quan-
tity s̄0[ s̄( f 0* 50) indicates the initial velocity of the BF, an
by s̄mx we denote the mean velocity taken at the maxim
driving force, f 0* 5 f mx* . It is easy to see that the obtaine
relations s̄050 and s̄mx.0 are in a qualitative agreemen
with the result shown by curve 1 in Fig. 3. Considering t
other case of the ‘‘motionless’’ BF, shown by curve 3, w
take thatgH51/hR

0 . Thus, we get thats0,0, in accordance
with Eq. ~4!. Further, the relationss(gH50)521 and
s(gH5`)51 hold, in accordance with the findings of Re
@9#. Now follows at once thats̄0(hR51),0 and s̄mx(hR
51)50. Whence, the mean velocity of the ac driven BF i
decreased function off 0* , and the ‘‘stopping’’ effect was
occurred. At last, the ‘‘reversal’’ type of the directed migr
tion ~curve ~2!! may be substantiated in a similar manner.
is easily to show that the reversion of the unforced migrat
will take place in any case of the asymmetrical rate functi
even if the asymmetry factorgR is close to unity. To avoid
the confusion we denote the balance parametergH of the
‘‘reversal’’ BF by r H . Thus, we rewrite the above discuss
relation ~2! as follows, 1,r H,(hR

0)21, or differently, hR
0

,hR,1. Now, owing to the relationgR.1 we get thatf mx
52Rm . Further, the obvious relationss̄0(r H), s̄0(gH51)
50 and s̄mx(r H). s̄mx(gH51/hR

0)50 hold. Whence it fol-
lows at once that the inequalitiess̄0(r H),0 and s̄mx(r H)
.0 are satisfied, i.e., the initial and ‘‘final’’ velocities of th
unforced motion are opposite in sign. Consequently, the
versal type of the directed motion occurred.

We summarize by noting that the new types of the un
rectional transport of BFs will take place in any case of
symmetric ac forcing, if the rate function is asymmetrica
shaped, i.e., if the relationgRÞ1 holds. The discussed ve
sions of the directed motion are somewhat different fr
those given in the case the cubic polynomial rate funct
@8#. Namely, the ‘‘stopping’’ effect and the reversal type
the directed migration of the traveling BFs, as well as
progressive dc motion of the initially static BF, were abse
in the cubic polynomial case. In particular, the possibility
the reversal migration demonstrates that the driven sys
could arrive at a nontrivial behavior. The ‘‘unforced’’ B
propagates~on average! toward the most stable state of th
system. Thus, the usual ‘‘scenario’’ of the transition, ‘‘fro
the most stable toward the less stable state’’ was bro
down. We emphasize that the discussed ‘‘anomalies,’’ incl
ing the stopping effect and the progressive dc motion of
static BFs, vanish at the limitgR→1. The ‘‘strange’’s̄2 f 0*
characteristics, as already noted, approach the depend
s̄50 when the asymmetry factorgR tends to unity. It is
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interesting to note that the possibility of the ‘‘reversal’’ e
fects in the ‘‘complex’’ Brownian ratchets, namely, in th
‘‘overdamped’’ Josephson junction device and in the no
Brownian motor, which is characterized by the spac
dependent friction coefficient, was recently discussed in R
@11#.

We already noted that the characteristic features of
unforced migration are not sensitive to the ‘‘profile’’ of th
symmetric ac forcing. Similarly as in the case of th
‘‘pulled’’ BFs @8#, the shape of the periodic functionf (t)
influences the ‘‘size’’ of the driving effect but does no
modify the character of thes̄2 f 0* dependence. Thes̄2 f 0*
characteristics taken for the frequently studied case of
harmonic forcing f * (t)5 f 0* sin(vt) are shown in Fig. 4,
where the labelsP, R, and S denote the progressive an
reversal types of the directed drift, and the stopping effe
respectively. The influence of the asymmetry factorgR on
the ‘‘size’’ of the driving effect is demonstrated by curvesa
andb, which satisfy relationgR(a).gR(b). The presented
characteristics evidently show that the unforced transpor
more ‘‘efficient’’ if the asymmetry of the rate function i
more pronounced. Namely, the curvesa, which correspond
to the greater asymmetry parametergR are more rapid, the
acceleration factors( f 0* )5 s̄( f 0* )/s0 taken at the fixed am-
plitude of the forcingf 0* increases withgR , in every case
labeled byP, R, and S. Curvesb that correspond to the
lesser asymmetry factorgR are more flattened. As a conse
quence, the reversion of the directed migration of the BF~see
curvesR) is achieved at a larger amplitude of the forcingf 0r*
if the asymmetry factorgR was decreased. More exactly, th
following relation holds:f 0r→RM→2Rm if gR→1, whence
follows that f 0r* → f mx* 51/2 if gR→1. Finally, the ‘‘size’’ of
the driving effect is large enough; a ten-fold acceleration
BF may be achieved if the initial velocity of the fronts0 was
small enough. The ‘‘effectiveness’’ of the AFR is demo
strated in Fig. 5 where thes2 f 0* characteristics, taken fo
the particular case of the progressive dc motion of the tr
elling BFs, are presented. As earlier, the acceleration fa

FIG. 4. The mean velocity~in arbitrary units! of the front that is
driven by the harmonic forcing. The labelsP, R, andS denote the
progressive (P) and reversal (R) types of dc motion, and the ‘‘stop
ping’’ ( S) effect, respectively. The balance factors are~dashed lines
P) gH51.25; ~solid linesR) gH50.8; ~dotted linesS) gH[1/hR

0

'0.43(a),0.58(b). The slope parameters of the rate function we
taken asr 151, and~curvesa) gR510; ~curvesb) gR55.
3-7
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R. BAKANAS PHYSICAL REVIEW E 69, 016103 ~2004!
s( f 0* ) increases withgR ~see curves 1, 2, 3!. The maximal
acceleration factorsmx5s( f mx* ) is of the order of 10. Fur-
thermore, the acceleration factors increases witha2 ; the
shift of the mean velocity is more pronounced if the midd
slope coefficient of the rate functiona2 is large~see curves 1
and 1a in Fig. 5!. The characteristic parameters ofs2 f 0*
dependencies shown by curves 1 and 1a were taken as fol-
lows: a2(1)540a2(1a), gR(1)5gR(1a), and s0(1)
5s0(1a). Thus, the asymmetry factors and the initial velo
ties of BFs strictly coincide in both cases discussed. Ne
theless, the acceleration factors are rather different, curvea
is more flattened. That is, one has thatsmx(1)/smx(1a)
>2, from which follows at once thatc̄mx(1)/c̄mx(1a)>12,
in accordance with the discussed relationc52Aa2s. Refer-
ring to symmetry relation~11b! we remind that the charac
teristic features of the unforced migration are quite similar
both ‘‘contrasymmetric’’ cases defined by the relationsgR
.1 andgR,1. The unforced transport generated by the c
trasymmetrically shaped rate functionsR(gR ,hR) and
R(1/gR ,1/hR) satisfies relations~11a! and ~11b!, discussed
above. This property is illustrated by curves 1a and 1b that
satisfy the relationsgR(1a)51/gR(1b)510, and hR(1a)
51/hR(1b)'1.27. The s2 f 0* characteristics shown b
curves 1a and 1b are rigorously symmetric, namely, the r
lation s(gR ,hR ; f 0* )52s(1/gR ,1/hR ; f 0* ) holds, in accor-
dance with Eq.~11b!.

There is little sense in discussing the peculiarities of
directed motion stimulated by the differently shaped forc
functions f (t). Our calculations, carried out by use of th
harmonic, biharmonic, and square-pulse functionsf (t),
showed that the considered ratchet effect, the shift of
mean velocity of the BF is more pronounced with the sy
metrically oscillating functionsf (t) that are characterized b
the flattened ‘‘profiles’’ in the vicinity of the extremesf 5
6 f 0 .

We summarize by noting that the characteristic feature

FIG. 5. The ‘‘size’’ of the driving effect. The parameter value
are ~solid lines 1, 2, 3! hR53, r 350.05, gR510(1),5(2),2(3);
~dashed line 1a) hR'1.3, r 352, gR510; ~dotted line 1b)
hR(1a)5hR

21(1b)'1.27,r 3520, gR50.1. Curves 1 and 1a show
the dependence of the acceleration factor versus the slope c
cient a2 ; the slope coefficients were taken asa2(1)540a2(1a),
anda1(1)5a1(1a), anda3(1)5a3(1a). Curves 1a and 1b illus-
trate relation ~11b!; the parameter values satisfy the relatio
hR(1a)5hR

21(1b) andgR(1a)5gR
21(1b).
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the directed motion of BFs that are driven by the symme
ac forcing are rather different in the cases of the symme
cally and asymmetrically shaped rate functions. The asy
metrically shaped rate function exhibits the considered fro
ratchet effect, no matter whether or not the Maxwelli
construction of the rate function was satisfied. The progr
sive, regressive, and reversal types of the unforced migra
of the traveling ~initially propagating! BFs are generated
with the asymmetrical rate functions. The governing para
eters that significantly influence the size of the driving effe
are as follows: the asymmetry factorgR[r 1 /r 3 , the middle
slope coefficient of the rate functiona2 , and the balance
factor gH , which indicates the deviation of the Maxwellia
construction from the strictly balanced situation. The ma
mal driving effect, the maximal the acceleration factorsmx
5 s̄mx /s0 is achieved at the maximal amplitude of the
forcing, f mx5DR fmx* , which linearly increases withDR.
Thus, the shift of the mean velocity in nonscaled un
D c̄( f 0)5 c̄( f 0)2c0 , decreases with the increasedDR, if the
amplitude f 0 of the ac forcing was kept fixed. Finally, th
rigorously symmetric rate function, defined by the relati
R(u22Du)52R(u21Du), does not exhibit the considere
ratchet effect. The motionless BF, which stays initially
rest, could gain the unidirectional motion discussed if t
slope coefficients taken at the outer zero points of the
function, R8(u1) and R8(u3), were different. The unforced
migration of the motionless BF is always directed toward
domain of that stable stateui , which is characterized by the
lesser slope coefficientR8(ui); herei 51,3.

B. Unidirectional motion induced by asymmetrically
oscillating forcing

Let us touch briefly on the unidirectional transport stim
lated by the asymmetric ac forcing. As noted, the conside
AFR does not work if both the rate function and the driv
are rigorously symmetric. Thus, we confine ourselves to
particular case of the AFR previously labeled by~B-a!. We
assume that the driver is asymmetric, whereas the rate f
tion is rigorously symmetric, namely, the relationsf (t)Þ
2 f (t1T/2), gR51, and gH51 hold. Thus, the particula
case of the initially static BF will be considered. The pe
odic ac forcingf (t) may be presented as a superposition
the harmonic functions. For simplicity’s sake we shall foc
on the particular case of the biharmonic forcing described
the expression

f ~ t !5 f 01sin~v1t1w0!1 f 02sin~v2t1w01Dw!. ~14!

In the considered case of the deterministic AFR the period
the ac forcingT should be a finite, uniquely defined param
eter. Hence, the frequenciesv1 and v2 are commensurate
and the ratiobv5v2 /v1 is the positive rational number
Different from the case of the soliton ratchets@12#, the initial
phasew0 may be chosen to be arbitrary. Indeed, the cons
ered system is essentially dissipative~extremely over-
damped!, thus the ‘‘memory’’ is completely lost, i.e., the bi
harmonic forcing may be treated as adiabatically slow if
relationTf@t is fulfilled. As previously, here byt we denote
the characteristic relaxation time of the system, and the

ffi-
3-8



-

e
ac

’’

. I

be

e,

e

-

’

F

,

li-
t
p

th
e

e

by
n

nc-

of
try

e

d
e-

tor

d if

he

city

he

a-

-

UNIDIRECTIONAL DRIFT OF FRONTS UNDER ZERO- . . . PHYSICAL REVIEW E 69, 016103 ~2004!
rameterTf5min$v1
21,v2

21% indicates the period of the rap
idly oscillating ‘‘mode’’ of the forcing. In the considered
case of the asymmetrically shaped functionf (t) the maximal
( f M) and the minimal (u f mu) values~‘‘amplitudes’’! of the
forcing are different. The ‘‘degree’’ of the asymmetry of th
biharmonic forcing may be evaluated by the asymmetry f

tor dF defined by the relationdF52 f̄ A / f N , where byf̄ A we

denote the averagef̄ A50.5(f M1 f m), and the ‘‘normalizing’’
factor f N is given by the expressionf N50.5(f M1u f mu). The
biharmonic forcing will be referred to as the ‘‘positively
asymmetric one if the parameterdF is positive, i.e., when the
inequality u f mu. f M holds. Differently, the inequalitydF,0
stands for the opposite case of the ‘‘negative’’ asymmetry
the case of the rigorously symmetric~e.g., harmonic! forcing
one has thatdF50. The shape of the periodic function~14!
depends on the adjustable parametersv1 , bv , f 01, andb f

[ f 02/ f 01, and the relative phaseDw. Clearly, the considered
function f (t) is ‘‘almost symmetric,’’ namely, the relation
dF!1 holds if either the amplitudesf 01 and f 02 or both
frequenciesv1 andv2 significantly differ from each other in
magnitude. The asymmetry of the biharmonic forcing will
distinctly pronounced if the amplitudesf 01 and f 02, and both
frequenciesv1 andv2 are of the same order in magnitud
i.e., when the relationsb f>1 andbv>1 hold. Taking the
parametersb f , bv , and Dw to be fixed, we arrive at the
family of ‘‘similarly shaped’’ functions f (t; f 01). The
strength of the forcing, the ‘‘amplitude’’ of the similarly
shaped functionf (t; f 01) may be easily modified through th
variation of the parameterf 01. Here we shall deal with the
similarly shaped functionsf (t). We stress that the ratiob f

5 f 02/ f 01 is kept fixed when the ‘‘amplitude’’ of the asym
metrically oscillating forcingf (t; f 01) is varied. Finally, the
condition f mx,min$2fm,fM%, which guarantees the ‘‘global’
stability of the driven BF, now readsf 01<(11b f)

21f mx .
The s̄2 f 01* characteristics of the initially motionless B

that is driven by the asymmetric ac forcing~14! are shown in
Fig. 6. The required parameters were taken as followsr 1

5r351, bv52, andb f51. The asymmetry factordF was
changed by tuning the relative phaseDw in accordance with
the relationDw5np/4, wheren51,2,3,... . We note that the
biharmonic forcing is rigorously symmetric, i.e., the equa
ties dF50 and f (t1T/2)52 f (t) hold if one assumes tha
n50,4,8,... Obviously, the unforced transport of BF disa
pears in such a rigorously symmetric case. Differently,
s̄2 f 01* characteristics taken in the other case of the asymm
ric forcing (dFÞ0) show that a dc motion of the initially
static BFs occurred~see curvesa, b, anda8, b8 in Fig. 6!.
More specifically, the following relationss̄.0 if dF.0, and
s̄,0 if dF,0 hold. Thus, the unforced migration of th
motionless BF is directed toward the stable stateu3 if the
biharmonic forcing is ‘‘positively’’ asymmetric (dF.0),
and, differently, the penetrated state of the BF isu1 in the
opposite case of the ‘‘negative’’ asymmetry (dF,0). This
implies that the directed drift of the BF that was driven
the biharmonic forcing satisfied the modified Maxwellia
rule, given by the following relations:s̄.0 if S* .0, ands̄
01610
-

n

-
e
t-

,0 if S* ,0. Similarly to what went previously, here byS*
we denote the total area enclosed by the modified rate fu
tion R* (u)[R(u)1 f̄ A .

The ‘‘size’’ of the diving effect, i.e., the steepness
the s̄2 f 01* characteristics depends on both the asymme
factor udFu and the outer slope parametersr 1,3. The accelera-
tion factor d s̄/d f 01* increases withudFu ~e.g., see curvesa
and b in Fig. 6!. The s̄2 f 01* , dependencies, taken at th
same asymmetry parameterdF , strictly coincide, in spite
of the fact that the shapes of the forcing functionsf (t)
are slightly different@see curvea, (n51,3) and curvea8,
(n55,7) in Fig. 6#. Furthermore, the relations̄(dF ; f 01* )
52 s̄(2dF ; f 01* ) holds: curvesa and a8, as well as those
labeled byb andb8 are rigorously symmetric. The discusse
relation is illustrated by Fig. 7, where the maximal drift v
locity of the front,s̄mx[ s̄( f mx), is plotted versus the relative
phaseDw, for the different slope parametersr 1,3 and the
arbitrary dF’s. One can see that the acceleration fac
d s̄/d f 01* increases if the slope parametersr 1 andr 3 decrease.
This means that the considered driving effect is enhance
either the middle slope coefficienta2 was increased or the
both outer slope coefficientsa1 and a3 were decreased, in
any case of the asymmetric forcing@Eq. ~14!#. Both, the
shape of the biharmonic functionf (t) and the asymmetry
factordF , as noted, are modified through the variation of t
relative phaseDw. The asymmetry factordF periodically os-
cillates withDw ~see the dashed curve in Fig. 7!. As a con-
sequence, the size of the effect, the shift of the mean velo
of BF is the periodic function ofDw ~see curvesa, b, andc).
Finally, the considered driving effect is large enough if t
outer slope coefficients of the rate functiona1,3 are relatively
small. For instance, takinga1,3>0.1 anda2>10 we get that
s̄mx>0.1. Thus the maximal velocity of the directed migr
tion in nonscaled unitsc̄mx is given by the relationc̄mx

>0.1cP , where the quantitycP[2Aa2 indicates the propa-

FIG. 6. The mean velocity of the initially static BF vs the ‘‘am
plitude’’ of the biharmonic forcing. The parameters arer 15r 351,
bv52, b f51, andDw5np/4, wheren is integer, and~solid linea,
n51,3) dF'0.32; ~solid line b, n52) dF'0.78; ~dotted linea8;
n55,7) dF'20.24; ~dotted lineb8; n56) dF'20.44. Other pa-

rameter values aregF(a)5gF
21(a8)'1.32, f̄ A(a)52 f̄ A(a8)

'0.24 and f̄ A(b)52 f̄ A(b8)'0.44, gF(b)5gF
21(b8)'1.78. The

inset shows the biharmonic function~14! (n52; Dw5p/2).
3-9
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R. BAKANAS PHYSICAL REVIEW E 69, 016103 ~2004!
gation velocity of the ‘‘pushed’’ BF, which always propa
gates at the greatest, ‘‘marginal’’ velocity. Thus, the shift
the mean velocity increases witha2 , very similarly as in the
case of the symmetrically oscillating forcing, discuss
above.

We summarize by noting that the unforced transport of
BF may occur even in the case of the rigorously symme
rate function, if the applied zero-mean ac forcingf (t) is
asymmetric, i.e., when the relationf (t)Þ2 f (t1T/2) holds.
In the particular case of the biharmonic forcing, which asy
metrically oscillates with time, the progressive, accelera
dc motion of the initially static BF takes place. The me
velocity of the considered BF depends on both the rela
phase of the biharmonic forcingDw and the slope coeffi-
cients of the rate function. Both the increase of the mid
slope coefficientR8(u2) and the decrease of the outer slo
coefficientsR8(u1) and R8(u3) enhance the driving effec

FIG. 7. The maximal drift velocitys̄mx ~in arbitrary units! of the
motionless BF vs the relative phase of the biharmonic forcingDw.
The parameters arebv52 andb f51. The parameters of the rat
function: gR51, andr 1[r 350.1(a),1(b), and 10(c). The dashed
line shows the dependence of the asymmetry factordF vs the rela-
tive phaseDw.
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discussed. The preferred direction of the directed motion
the motionless BF is described by the modified Maxwelli
rule.

IV. CONCLUSIONS

The unidirectional transport of the bistable fronts und
the action of the additive zero-mean ac forcing was cons
ered within the piecewise linear approximation of the ra
function. The bistable system under the periodically oscill
ing zero-mean forcing may serve as a deterministic fr
ratchet, irrespective of the symmetry properties of the r
function. Two separate classes of the deterministic ratch
based on the broken symmetry of~i! the rate functionR(u),
and/or~ii ! the external ac forcingf (t) have been analyzed. I
was shown that the work of the periodic zero-mean forc
might be converted into a direct motion of the bistable fro
in both cases of the symmetrically and asymmetrically os
lating forcing. The progressive~accelerated!, regressive~de-
celerated!, and reversal dc motions of the travelling~initially
propagating! BFs that are driven by the symmetrically osc
lating ac forcing were found with asymmetrically shaped r
functions. The initially static BF, if influenced by the per
odic zero-mean forcing, can gain the dc motion discusse
either the rate function or the applied ac forcing is asymm
ric, namely, if one of the following relations,R(u22Du)
ÞR(u21Du) and f (t)Þ2 f (t1T/2), was satisfied. The
governing parameters that influence the ‘‘size’’ of the ratc
effect are as follows: the strength of the applied ac forci
both the asymmetry factor and the middle slope coeffici
of the rate function, and the balance factor, which indica
the disbalance of the Maxwellian construction.

The quasistatic approximation left out the question ab
the dependence of the characteristics of the ratchet versu
frequency of the applied ac forcing. This problem, as well
the other case of the noisy AFR, is analytically tractable
the use of perturbative techniques, and requires further at
tion.
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