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Unidirectional drift of fronts under zero-mean force, and broken symmetries of the rate function
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The deterministic front-ratchet effect, namely, the unidirectional transport of the bistable (B&igsunder
the additive zero-mean ac forcing, is considered within the piecewise-linear model of the bistable system. Two
different mechanisms underlying the front ratchet, two cases of the broken symméintha rate function,
and/or(ii) the external zero-mean ac forcing are analyzed. Types of unidirectional motion, some versions of the
“unforced” migration of BFs, are found in both cases of the travellingtially propagating and the static
(motionless fronts. We show that symmetry breaking in the front ratchet could produce progressive, regres-
sive, and reversal types of the unidirectional motion of traveling BFs. By tuning the parameters of the rate
function the propagation direction of BF exhibits reversal, as a function of the amplitude of the applied ac
forcing. The static BFs, which stay initially at rest, can gain the dc motion discussed if the symmetry of either
the rate function or the applied ac forcing is broken. The adiabatic approximation is used. To perform a
rigorous analytic treatment for the arbitrary strengths of the driving force we assume that the frequency of the
applied ac forcing is small, if compared to the characteristic relaxation rates in the system.
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[. INTRODUCTION described by the “response” functidn, which is presented
by the “multiplicative” forcing term on the right hand side
The ratchet effect, a nonzero net drift of the particles un-of Eq. (1). The “transfer” functionp(u) in the forcing term
der the oscillating zero-mean forcériver), arises in a large F describes the most frequently studied case of the weak
class of asymmetric systems when driven out of thermaparametric(parametrically stimulateddriving [5—7]. The
equilibrium [1]. Particles in a periodic potential, lacking the shape of the transfer function depends on the externally con-
spatial symmetry, can drift on average in one direction evenrollable parameter being under the action of the external
if the average of the applied forces is strictly zero. Bothfield f. The particular case of the noisy ratchet, namely, a
versions of the stochasti(oisy drivej and deterministic noise-supported drift of the fronts under “multiplicative”
(regular drivey ratchets are possible and have been discussetbise was examined in Ref&—7], within the cubic polyno-
at length in Refs[1]. The soliton ratchet and various mecha- mial model of the bistable system. A crucial feature of the
nisms underlying the “unforced” dc motion of the solitary “parametric” ratchets is that the mean value of the forcing
waves in continuous spatially extended systems have beasrm F is nonzero even if the external forcirfghas a zero
reviewed in Ref.[2]. Both underdamped and overdampedmean. One can say that the dc motion discussed, the shift of
sine-Gordon “kink ratchets” have been studied in the extenthe mean velocity of the front, comes from the different
sive literature, analytically and by numerical simulations“symmetry” of the external forcing and the response func-
too (see Ref.[3]). The role of the inertial effects on the tion F which describes the “actual” driving force of the
noise-supported dc drift of the kink was recently discussedront. Broadly speaking, the symmetrically oscillating force
in Ref. [4]. f is transformedmodified into an asymmetrically oscillat-
The *“front-ratchet” effect, namely, the unidirectional ing torqueF through the action of the applied fiefdon the
transport of the elementary ordered structures in a bistablexternally controllable parameter of the system. As a conse-
dissipative system, was also discussed, in both cases of stguence, the averages of the fieldand F differ. This pro-
chastic and deterministic drivig—8]. The evolution equa- duces a spurious drift, the “unforced” migration of the front.
tion of the front under the external fiefdx,t) reads In the case of the noisy driver this conclusion may be sub-
stantiated by Novikov's theorem: the problem of the mean
U= Uz~ CU+R(U)=F(f;u), F=p(wf(zt), (1)  velocity of the disturbed front is reduced to the deterministic
equation, which is characterized by the “renormalized”
where the functioru(z,t) describes the steplike field of the (modified rate function(e.g., see in Ref(7]). The consid-
front, z=x—ct is the travelling coordinate, and the rate ered ratchet effect is purely deterministic, in essence, that is,
function R(u), which characterizes the rate of the transientnot associated with the noisy character of the driver. The
processes in the system, has three zeros=at; ,u,,uz (say, mechanisms responsible for the “unforced” migration are of
u;<u,<<us). In the case of the bistable system one has thathe same physical origin in both cases of the deterministic
R’(u;3)>0, andR’(u,)<0, where the prime denotes the and stochastic driver. Clearly, the mechanism of the “para-
derivative. The action of the external fiefdon the front is  metric” ratchet breaks down if the transfer functipfu) is a
constant, i.e., in the case of the additive forcing teFre f
[5]. Nonetheless, the unidirectional transport of the fronts
*Email address: bakanas@uij.pfi.It may take place even in the case of the “additive” zero-mean
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driving. A zero-mean force could give a net contribution to solution of the driven system with similar but differently
the front dynamics despite the additive character of the forcshaped rate functions is ordinary not feasible. Thus, it seems
ing term[8,9]. reasonable to replace the nonlinearity by linear pieces. In the
The “additive” front ratchet (AFR), the unidirectional —present paper a “pseudolinear” AFR that is characterized by
transport of the bistable fronts under the additive forcingthe piecewise-linear rate functidR(u) is considered. The
was already considered in Refs,8], by the use of the cubic piecewise-linear approximation exhibits the most important
polynomial approximation of the rate function. By a bistablefeatures of the bistable system, and provides us with a model
front (BF) we mean one of “saddle-saddle” type. The con- of the “flexible” symmetry. The motivation of the present
sidered BF separates two stable uniform states of the systerfudy is to present a simplified picture of the unforced trans-
i.e., it performs the transition between the steady stajes Port of BFs, generated by asymmetrically shaped rate func-
and u;. Similar to the case of the parametric ratchet, thetions. We extend our previous study of the ac driven BFs by
“additive” ratchet is more efficient, and the shift of the mean @ consideration of the “symmetry breaking”in AFRs that are
velocity of the driven BF is more pronounced at high described by differently shaped rate functions. Both the ini-
strengths of the applied forcinfj At low intensities of the tially static and initially propagating BFs are discussed. New
external fieldf which is tractable within the first-order ap- interesting versions of the unforced migration of BFs are
proximation of the perturbation technique, the deviations offound.
the moment velocity of the BF depend linearly on the ap- The unidirectional motion of BFs, induced by the additive
plied forcing f Hence, weak additive driving does not pro- Zero-mean forcing, as far as we know, has not been studied
duce the “spurious” drift, the unforced migration of the BF in considerable detail as yet. In addition, the mechanisms
(e.g., see Refd5,10]). underlying the “additive” ratchet will also work in the case
The deterministic version of the “additive” ratchet, Of & parametric ratchet, which is described by a “muiltiplica-
namely, the unidirectional transport of BFs under the perifive” forcing term, but not the reverse. The reverse is not
odically oscillating zero-mean forcinf(t) was recently dis- Necessarily true. .
cussed in Ref[8], within the cubic polynomial model of the ~ The paper is organized as follows. In Sec. Il we discuss
system. The calculations, which have been carried out for thi€ model, the front solutions of the quasistatically driven
arbitrary strength of the applied forcirigt), showed that the BF, and the speed equation which describes the unforced

“pulling” effect, the progressive dc motion of BFs, occurred Migration of the ac driven BF. Section Ill deals with the
if the Maxwellian construction of the rate function was not Proken symmetries of both the rate function and the external

balanced. This implies that the work of the additive zero-ac forcing. Two separate cases of the symmetry breaking, the
mean driver may be converted into the accelerated dc motiofharacteristic features of the directed transport generated by
of a BF if the “global symmetry” of the rate function is both th_e asymmetric rate funcnons and_the asymmetrlc_ally
broken. Direct calculations showed that a significant driving®Scillating zero-mean forcing, are considered. The typical
effect could be achieved even in the case of an additive/€rsions of the unforced migration in the considered AFR are
driver, if the applied forcing was strong enough. Further- classified. Finally, we summarize the main conclusions.
more, the “pulling” of the front disappeared for the initially

statichF, when the Maxwellian construction was strictly bal- |, MODEL, APPROXIMATION, AND FRONT SOLUTIONS

anced.

The unforced dc motion usually originates in systems The analytic treatment of the disturbed BF usually re-
lacking some symmetry, or it comes from an asymmetricallyquires the use of approximate approaches. In the considered
oscillating zero-mean field(x,t) [1-3]. It is clear enough case of the AFR the perturbative techniques which describe
that the characteristic features of the directed transport in théhe particular case of the weak forcirigare of limited use.
AFR must be sensitive to the “symmetry” of the rate func- The first-order approximation of the perturbation technique,
tion, i.e., they should depend on the shape ofRheu char-  as noted, leads to the vanishing result. Thus, higher order
acteristic, similar to the case of the soliton or string ratchet@pproximations off are required to describe the unforced
[2,3]. Evidently, the “cubic polynomial” AFR is very spe- migration of the ac driven BF. Furthermore, the dc drift, the
cific, the cubic polynomial rate function satisfies some sym-shift of the mean velocity of the BF, is more strongly pro-
metry properties, discussed below. Thus, the natural questiomounced at high strengths of the applied forcii(g) [8].
that needs to be addressed is whether the “pulling” of BFs,Therefore, to describe the most general case of arbifrary
the progressive dc motion that occurred within the cubicwe restrict ourselves to the case of the adiabatically slow
polynomial model, was a common property, a generic featurdriving. We assume that the period of the ac forcihgs
of the considered AFRs. Furthermore, it is not clear enougharge if compared to the characteristic relaxation times in the
whether or not the considered ratchet effect may take placgystem(e.g., see Ref$8,9]). The domain of validity, a rough
in the “globally symmetric” case, when the Maxwellian con- criterion of the adiabatic approximation, may be obtained by
struction is strictly balanced. Is it possible to accelefat® the use of the perturbation technique and was presented in
averagg the motionless BF, which stays initially at rest? Fi- Ref. [8]. The criterion readS¢> 7, where the parameter
nally, what would be the preferred direction of the unforced=maxR’ ~(u,),R’ ~*(us)}, stands for the characteristic relax-
migration in such a “strictly bistable” case? ation time of the system, and the quantify indicates the

Unfortunately, the analytically tractable models of front period of the rapidly oscillating “mode” of the forcin§(t).
ratchets of the “flexible” symmetry are lacking. An analytic Clearly, the periodically oscillating forcinf(t) may be pre-
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FIG. 1. The piecewise-linear rate function.
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Similar to the case of the fred£0) system, both the front
solution and propagation velocity of the driven BF are found
by solving the system of ordinarfjinear differential equa-
tions, used in conjunction with the appropriate boundary and
matching conditiongsee Ref[9]). The quasistatic field of
the ac driven BFu(z,t) must tend to the values,(t) and
v3(t), for z— £, Without loss of generality we assume
that u(z— —«)—wv4, and u(z— +«»)—uv5. This implies
that the propagation velocity of the free, undisturbed @F

is described by the relatiortg>0 if Sy,> — S, andcy<<0 if
Su<—S,, where the quantitieSy, andS,, denote the areas
enclosed byR—u characteristic in the intervalsai,,u,] and
[u,,uz] of the variableu respectively. More specifically, the
free BF propagates in such a way that the steady state
invades the states, if the Maxwellian construction is “posi-
tively” disbalanced, namely, if the conditio®=Sy+ S,

sented as a superposition of the harmonically oscillating>0 is fulfilled. Differently, the penetrated state of the free
“modes.” Evidently, the discussed approximation is exact inBF isu; if S<0. For the considered case of the pseudolinear
the limit T;—o. The adiabatic approximation is also useful rate function(3) we get that

in another respect: the mechanisms underlying the consid-

ered AFR may be readily understood by considering the qua-

sistatic limit. The response of the bistable front to the slowly

oscillating forcingf(t) is described by the equation

Uy, +c(t)u,—Re[u;f(1)]=0, Rg=R(u)—f(t). (2
Here, byRr we denote the modified rate function; the pa-
rameterc(t), defined by the relation(t)=c[ f(t)], indicates
the moment velocity of the driven BF, and the “flexible” rate

function R(u) is described by the linear piecésee, Fig. 1

a; (U—Uy), U<uy

R(u)y={ —az (U=Up), uy<u<up ()]

a3 (U—Ujz), U>Upy.

Here the free parameters of the “basic” rate functiefu)
are defined as followsu; <uy<u,<u,<usz, and a;>0,
(i=1,2,3). The extremes of the rate functidty=R(uy,)
andR,=R(uy,), are given by the expressidRy n= a,(u,
—Uyw.m), and the time-dependent quantities which indi-
cate zeroes of the modified rate functiBa, are described
by the relationsv; 3=u; 3+ a; 5f(t) and v,=u,— a,f(t).

co=0 if hg=hg,

(4a)

Co=<0 if hg=h§,

(4b)

where

ho=\is/is, 9u=V—Sw/Sm (40

hgr=0n hgv

Here the auxiliary parametetss and h%, defined by the
relationshg= — Ry /R, andhg= hr(co=0), indicate the ra-
tio of the extreme values of the rate function. The faggr
may serve as the “balance pointer”: it indicates the “disbal-
ance” of the Maxwellian construction from the strictly bal-
anced situation, when the equal areas $)jg= — S, is sat-
isfied. More specifically, the considered system is “strictly”
bistable, i.e., the free BF is statimotionless if the equality

We do not impose any additional restrictions on the paramg,=1 holds. Relationg4) describe the well known result:

etersu; and «;. Thus, the shape of the rate functi&{u)

the free BF always propagates in such a way that the less

may be easily modified through the direct variation of thestable state is the penetrated one. It will be shown below that

adjustable parametets and «;. Clearly, in the case of the
slowly oscillating (quasi-statit forcing the response of the
bistable system to the applied forcifi¢t) may be treated as
very rapid, almost “instantaneous” or{@ the time scale of
the characteristic perio@; of the forcing. Thus, the charac-

the unforced migration of BFs does not satisfy relatiofs
i.e., the given classification “scheme” breaks down. More
exactly, inequalitieg4a) and (4b) do not hold if one substi-
tutesc for ¢y into Eq. (4), where byc we denote the mean
velocity of the ac driven BF.

teristic parameters of the disturbed front-solution, e.g., the The solution of Eq(2), the method of finding the front

discussed parametets 3, the moment velocityc(t), etc.,
are directly expressed through the “variablé(t). Let us
turn to the front solutions of the disturbed BF.

solution and the velocitg(t), is quite similar as in the case
of the free BF(see in Ref[9]). Without giving the details of
the calculations, which are straightforward albeit lengthy, we

Thanks to the piecewise-linear character of the rate funcpresent the front solution, which satisfies the discussed
tion, the method of finding the front solutions is very simple. boundary conditions:
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U1+(UM_Ul)quklz), z<0

u(z)=

vyt (vo—uy)b(w)exp(—wz)sin(g,z— V), 0<z<z, (5)

v3— (v3—Up)exgks(z—z,)], z>2z,.

For the sake of brevity we have introduced the abbreviation

w=c(t)/2. The required parameters are described as follows:

Kidw)=—-w= W+ a3 Oa(w)=a—w? (63

e O2(w)
b(w)={1+1/6?(w)}*?, a(w,al)—gl(w), (6b)
B arctafn(w)], 6(w)>0
B —arctafi— 6(w)], 6(w)<O0,
Zm=0, ' P(W;ay, ). (60

The auxiliary functions are given by the expressions
g1,3= —W+ 33 3kg 3(W),

arctah Tg(w)],
—arctaf —Tg(w)],

Tg(w)>0

Tg(w)<0’ (73

CD(W)Z[

where

Tog(w)=fgn/fcn,  Fsn=0a2(W)[ d1kq (W) — d3kz(wW) ],

(7b)

Snw)=fsy/fy, feo=—[a5(W)+g1(W)ga(w)],
(70
cn(w)=feo/fy, fy=0g3(w)+gi(w). (7d)

Here the following denotations have been introducéd;
=a2/ai andji:1+5i.

Pr(f):=1/e(f), (8b)
where
B Sn(s)
Hs(8) = = o(3)]sin® ()’
he(D)=he a )™ ~ —R 7’ 02
and the sign = " denotes a definition. Here the function

f*=f/AR describes the external forcing, scaled in the units
of the “height” of the rate function,AR=Ry—R,. The
parameters; ; and pg are defined as followgg=1/hg and
ri=a;/a,. The unknown functiorp(s) in Eq. (99 is given

by the following expressions:

sd(s) B B
0,05 Qa(8)=0y/a,=\1-52

From Eq.(9a), in the conjunction with Eqs(6a) and(7), it
follows that the quantityHg(s;r,r3) in the speed equation
(8a) is a function of both the velocitg and the slope param-
etersr, 3. Consequently, Eq(8a) yields by inversion thas
=s(f*;hg,r1,r3). Thus the moment velocity of the driven
BF s(t)=9[f*(t);hg,r1,r3] depends on the slope param-
etersr, 3 and the “balance factorgyy, . Thus, the pseudolin-
ear rate functions, taken at the fixed slope parameteasnd

rs, may be treated assimilarly shapetiones. The family of
similarly shaped rate functions will exhibit similar driving
properties of BFs. More specifically, the characteristic fea-
tures of the unforced transport generated by the rate func-
tions with the fixed parameters, r;, andhg will strictly

e(s)= (9b)

The central subject of the present consideration is the veeoincide, if the propagation velocity and the external forcing
locity of the ac driven BF. Similar to the case of the free BFwere taken in the scaled units, defined above. This implies
(see Ref[9]), the speed equation of the driven BF is fol- that the similarly shaped rate functions may be treated as
lowed from the matching conditions, by the direct substitu-equivalent, if the balance parametg was taken fixed. Fur-
tion of the front solution(5) into the matching equations. It thermore, the following relations hold:

was shown in Ref[9] that the propagation velocity of BF

should satisfy the relatiohc|<cp, where the quantitycp
=2/=R'(uy)=2\a, indicates the “marginal” velocity of

the “pulled” front. More accurately, the following relations

hold: c— —cp if g4—0, andc—cp if gy—. To simplify
the expressions we introduce the abbreviatienc(t)/cp.
Hence, the scaled velocity of the driven BR) will satisfy

the relation|s(t)|<1. Without going into detail we present
the required speed equation in two completely equivalent

forms,
Hs(siry,r3)=he(f), (8a)

Ps(sir1,r3)=pe(f), Pg(s):=1/Hg(s),

(103
(10b)

Hs(sir1,r3)=Pg(—=5S;r3,rq),
he(f*;hg) =pe(—f*;1/hg).

Now, from Egs.(9) used in conjunction with Eq10) imme-
diately follows that the moment velocity of Bt) satisfies
the relation

s(f*;ry,r3,hg)=—s(—1*;rg,r;,1hg).

(11a

In addition, the auxiliary functiom g(s) is positive,Hs>0.
More exactly, the following relations holddg(s—1)— oo,
and Hg(s— —1)—0. As a consequence, from Ea), in
conjunction with Eq.(9a), follows at once that the applied
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S relevant symmetries of both the rate function and the peri-
odically oscillating driver. To perform the needed classifica-
tion we define the rigorously symmetric functioRgéu) and
f(t) as follows:(a) R(u,—Au)=—R(u,+Au) and(b) f(t
+T/2)=—1(t), whereAu is the arbitrary constant. The pre-
sented relations mean that the both discussed functr{ng,
and f(t), are “contrasymmetric.” Roughly speaking, the
consideredR—u and f—t dependencies exhibit a “mirror
t image” symmetry with respect to the abscissa axis. Both the
! rate functionR(u) and the forcingf (t) will be referred to as
! f asymmetric if the relation&) and(b) are broken. Two sepa-
! + rate cases of the broken symmetry of the rate funcién)
! and/or the ac forcingdriver) f(t), two different types of the
v v v symmetry breaking in the considered AFR could be identi-
FIG. 2. The moment velocity of the bistable front driven by the fied: (A) R(u,—Au)# —R(u,+Au), and/or(B) f(t+T/2)
harmonic forcing f* (t)=*f* sinwt. The parameter values are # — f(t). Both lead, as shown below, to a “rectification” of
(solid linea) f*(t)=f*(t), fne=—Rm, r1=10,r;=0.1, andn, ~ the moment velocity of the ac driven BF and, as a conse-
=9.5; (dashed lineb) f*(t)=F*(t), fmy=Ru, r1=0.1,rz;=10, quence, to the frqnt-ratchet effect. We notice that the asym-
andhg=0.105. The rigorous equalityz(a) =hg *(b) holds. metric driver, defined by relatio(B), is frequently used as
the basic ‘impetus in the Brownian motors[1]. Using the
discussed relations we arrive at the following combinations
of the symmetry breaking in AFR$A-b)—the rate function
is asymmetric, the driver is symmetritB-a)—the driver is
asymmetric, the rate function is symmetrié-B)—both, the
rate function and the driver, are asymmetric. In the present
report we shall deal mainly with the ca$é-b). Primary
. o % attention will be given to the speed “rectification” generated
apprqaqh each qther in the linfit — = fr,,, and co_ale_sce at by the asymmetrically shaped rate functions. It is easy to see
this limit. The discussed symmetry proper@la is illus- 54 the cubic polynomial AFR, discussed in Riéfl, may be
trated in Fig. 2, where the moment velocjt), followed ifieq as the caséA-b). Nevertheless, the cubic polyno-
from the speed equatiofa), is presented for two OppoSite pja| rate function is, to some degree, symmetric. Let us
cases OI the Darmonlc forcing described by the relatiory,q ity the symmetry properties of the rate functions more
f*(t)=f%==1fg sinwt. One can see that the oscillations of 4ccyrately. It is obvious that the structural asymmetry of the

the velocitys(t), shown by curvesd) and b), are strictly  consideredspatially homogeneouisystem is masked in the
opposite, in accordance with E¢l1a. As a consequence, rate function.

0.6

0.3

0.0

-0.3 \ "o “\‘ ". \

06

forcing should satisfy the conditiorfi(t)<f,,,=min{Ry,
—R,}. Otherwise, using the scaled units we get thaft)
<f* =min{(1+psY),(1+hgY)}. It is easily to see that the
presented inequalities guarantee the “global” stability of the
driven BF: the middle zero point, of the modified function
Rr and one of the outer points, eithey or vs, closely

the mean velocity of the “harmonically” driven BE will The rigorously symmetric rate function defined by rela-
satisfy the relation tion (a) implies that the considered system is “strictly
bistable.” The equal areas ru,= —S,, holds; hence, the
- f%x P £ 1 1
S(r1.r33f0 . R) = =S(ra.raifg , 1hg), (110 free BF is always static in such a “locally” symmetric case.

(Jearly, the equal areas rule may be fulfilled too in the other
case of the asymmetric rate functions defined by reld#on
Generally speaking, the rate functions, which satisfy the
equal areas condition, may be typified as follow4)
_ 1 (T Rs(up,—Au)=—Rg(u,+Au) and (2) Ry(u,—Au)#
A=(A)= ff dtA(t). (120 —R,(u,+Au). Hence, the two separate classes of the simi-
0 larly shaped rate functions may be identified) {Rg}

From Eg. (114 it follows that relation(11b) holds in any :=Rs(u)+C—thesymmetrically shapetsymmetrical ones,
case of the “symmetrically” oscillating forcing defined the and (Il) {Ra}:=Ra(u) + C—the nonsymmetrically shaped
relation f(t+T/2)= — f(t). For this reason, when consider- (asymmetrical those, whereC denotes the free constant.
ing the directed drift of BFs that are driven by the “symmet- Evidently, the criterion of the “broken symmetryA) may
ric” ac forcing we shall restrict our consideration to the ratefulfilled in either case of theymmetrica(Rs) or asymmetri-
functions defined by the relation >r5. We assume in the cal (Ra) rate function. Nevertheless, the peculiarities of the
fo”owing that the “asymmetry factor”fszrl/r?’ satisfies unidirectional mOtlon of BFs, i.e., the CharaCteriStiC typeS of
the conditionyg> 1. the unforced migration, generated in either case of the sym-
metrically or the asymmetrically shaped rate function, are
rather different. For instance, the rate functions described by
the cubic polynomials are “symmetrically shape@ym-
metrica) ones. As a consequence, the “pulling” of the
Before analyzing the unforced transport of BFs, generateétonts, the particular case of the accelerated dc motion of the
by the differently shaped rate functions, let us classify theraveling (initially propagating BFs occurred in that

where the overbar denotes the average over the period of t
forcing, T=27/w. Here and in the following we use the
denotation

. SYMMETRY BREAKING IN FRONT RATCHETS:
UNIDIRECTIONAL TRANSPORT OF AC DRIVEN FONT
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casg 8]. In what follows we shall deal with the most general <S>
case of the asymmetrical rate functions, which satisfy the
relation(Il). The new versions of the directed motion of BFs
will be found with the asymmetrical rate functions.

Referring to the particular case of the piecewise-linear
approximation we writeRa(u)=R(u; yg# 1) and Rg(u)
=R(u;yr=1). Thus, the symmetry properties of the 0
pseudolinear rate functions are very transparent; they are _—/0'_25 0'_50 f*
“governed” by the asymmetry factoyg. We notice that the ' 3
rigorously symmetric rate functiofe), which describes the -2F
particular, very specific case of the symmetrical rate func-
tions, is defined by the relationg=1 andyg=1.

In closing the discussion of the symmetry properties of 4T b e
the considered AFR we summarize that t"_VO Separf';_lte cases of FIG. 3. The characteristic types of the unidirectional motion
the broken_ symmetry O(_') th_e_ rate funct_|(_)n, andn)_the induced by the periodic square-pulse forcing. The slope parameters
external driver could be identified. In addition, two different 5rer — 10 andr,=0.1. Other parameter values dtashed line)
classes of the asymmetric rate functions may be typified: ¢ —1 25 ,>h9); (solid line 3 g=1 (hg=h2); (solid line 2
symmetrical (symmetrically shapedones, and(ll) asym- g —0.7 (\3>hg>1); (solid line 3 gy~0.32 (g=1); (dashed
metrical (asymmetrically shapgdhose. Let us turn to the [ine b) g,,=0.25 (g<1); (dotted linec) g,=0.29 (g<1). The
unforced transport of the ac driven BFs, generated by thénean velocity is presented in arbitrary unsg(a) = 1.
asymmetrically shaped rate functions. As assumed, we shall
deal with the similarly shaped rate functions that satisfy theC
relation yg>1.

R(u,) > R(u)

-----

ussed if the relationgr=1 andhg=1 are fulfilled. Differ-
ent types of the directed motion, the new versions of the
unforced migration, are shown by solid curves 1, 2, and 3.
They could be typified as follows: the progressive dc motion
_ ) ~of the static BRcurve J), the reversal migration of the trav-
Speed equation(8a) is transcendental, the velocity eling BF (curve 2, the stopping of the traveling BFeurve
s[ry,r3;f*(t)] is not expressible as function of the param-3). we stress that the considered versions take place only in
etersry,rs,gy and the forcing ternf*(t). Thus, the speed the case of the asymmetrically shaped rate functions, defined
equation was examined numerically, the numerical simulaghove. The symmetrical rate functions do not exhibit the
tions have been used to describe the unforced migration qfiscussed types of the unforced migration, very similar to the
BFs. As a preliminary let us discuss the typical versions ofcase of the cubic polynomial model. More specifically, the
the _directed drift stimulated by the periodic square-pulsecurves(1, 2, and 3 shown in the figure become more and
forcing, more flattened and approach the segmght/2] of the
5, NT<t<(n+1/2T straight line described by the equaties 0, if the asymme-
g% try factor yg tends to unity. The— f§ characteristics shown
fo, (N+1AT<t<(n+ DT, by curves 1 and 3 demonstrate that the two check points, two
“critical” values of the balance factog could be identified,
namely,gy=1 andgy= 1/h%. Both of these possess a simi-
larity, namely, they are related to the motionless BF. The first
deals with the initially static BF, whereas the second stands
for the other limiting case of the “motionless” BF that is
%(iven at the maximal strength of the forcirfg,=f},.. The
atter implies that the average velocity of BF, which at the
beginning was propagating at some fixed non-zero velocity
S, was reduced to zero, i.e., the following relatiosst 0
ands(fr,)=0 were satisfied. The novel types of directed
motion satisfy the following relationgl) g,,= 1—the accel-

A. Unidirectional transport generated by asymmetrically
shaped rate functions

f*(t)=

n=0,=£1,£2,... (13

The s—f§ characteristics of the ac driven BF, following
from speed equatio(8a), are shown in Fig. 3, for the differ-
ent “balance” parameterg, . The strengths of the applied
forcing and the slope parameters were taken in accordan
with the relations & fj <fy,, and yg>1, discussed above.
The's—f§ characteristics shown by dashed liresand b
describe the “standard” pulling effect, the progressive dc
motion of the traveling §,# 0) BF, previously discussed by

use of the cubic polynomial rate functi¢B]. The progres- . . -

sive dc motion implies that the average velocity of the trav-erat%dffc motion of thg Sta,t'c Bfcurve 1 ,(2) 1>gy
eling BF was increased due to the action of the externaF(hR) —theor(i\gersal migration of the .travelllng BEurve
zero-mean forcing on the front. The discussed type of di2): (3) 9u=(hg) "—the decelerated drift, followed by the
rected drift takes place even in the case of the symmetricallgtoPping effectcurve 3. One can see that the character of
shaped rate functions, when the asymmetry fagtpequals  thes—fg dependencies, shown by curves 3 dnds rather
unity. Nevertheless, the rigorously symmetric rate functiondifferent. The interval of the intermediate valugs that
which describes the particular case of the initially static BFseparate the curves 3 ahdlepends on the asymmetry factor
does not exhibit the dc motion discussed. Quite similar to theyr and is relatively small. In addition, the “intermediate”
case of the cubic polynomial model, the static BF, which—fg characteristics are nonmonotonic functions of the am-
stays initially at rest, cannot gain the directed motion dis-plitude f§ (see dotted curve in Fig. 3. It should be noted
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that the novel types of the directed motion take place inany «gs }
case of the symmetrically oscillating forcing. This conclu-
sion may be substantiated in the following way.

First, the obvious relations hold;,,= — R, if hg>1, and
fmx=Rm if hg<<l. As assumed, the asymmetry factgg
satisfies the relationr>1, thus, we get thah®%>1, in ac- T .
cordance with Eq(4c). Now is easily to conclude that fol- przzsree"”
lowing relations are fulfilled(i) s,,,=1 ands,,>—1 if hg 0 e ]
>1; and (i) s,,<1 ands,,,=—1 if hg<l, wheres,,, o
=s(=f},). Hence, for the particular case of the initially -1 ........----"'"'..:"
static BF we obtain thad,=0, ands,,>0, where the quan- ——
tity So=s(fg =0) indicates the initial velocity of the BF, and a
by snx we denote the mean velocity taken at the maximal FIG. 4. The mean velocitin arbitrary unit$ of the front that is
driving force, f§ =f . It is easy to see that the obtained driven by the harmonic forcing. The labe®s R, andS denote the
relationss,=0 ands;,>0 are in a qualitative agreement progressive R) and reversalR) types of dc motion, and the “stop-
with the result shown by curve 1 in Fig. 3. Considering theping” (S) effect, respectively. The balance factors @tashed lines
other case of the “motionless” BF, shown by curve 3, we P) 94=1.25; (solid linesR) g,,=0.8; (dotted linesS) QHE_l/hg
take thatg,, = 1/h%. Thus, we get thas,<0, in accordance ~0.43(@),0.58(b). The slope parameters of the rate function were
with Eq. (4). Further, the relationss(gy=0)=—1 and '@kenas;=1, and(curvesa) yz=10; (curvesb) yz=5.
s(gy=%)=1 hold, in accordance with the findings of Ref. . -
[9]. Now follows at once thaBg(hg=1)<0 ands,(hg INteresting to note that the p0_53|b|||ty of the “reversgl" ef-
=1)=0. Whence, the mean velocity of the ac driven BF is af€Cts in the “complex” Brownian ratchets, namely, in the
decreased function of*, and the “stopping” effect was “overdamped” Josephson junction device and in the noisy

occurred. At last, the “reversal” type of the directed migra- Brownian motor, Wh'ch 1S characterized by the space-
tion (curve (2)) may be substantiated in a similar manner. I,[dependent friction coefficient, was recently discussed in Ref.
is easily to show that the reversion of the unforced migratior{ll\]/i/ read ted that the ch teristic feat f th
will take place in any case of the asymmetrical rate function, ¢ aready note at the characteris 'C“ ea .ur?s of the
even if the asymmetry factoyg is close to unity. To avoid unforced migration are not sensitive to the “profile” of the

the confusion we denote the balance paramgtemf the symmetric ac forcing. Similarly as in the case of the

“reversal” BF by ry . Thus, we rewrite the above discussed f‘pulled" BFs [8], the shape of the periodic functio(t)

relation (2) as follows, 1<rH<(hg)’1, or differently, h% influences the “size” of the driving effect but does not

. . modify the character of the—fj dependence. The—f§
frlR<1' Now, owing to the refatioryz>1 we get tha_lfmx characteristics taken for the frequently studied case of the
=—R,,. Further, the obvious relatiorg(r) <sg(gy=1) : s * -

_ = = — 1m0y — . harmonic forcing f* (t)=f§ sin(wt) are shown in Fig. 4,
=0 ands,(ry)>sSm{gy=21/hg)=0 hold. Whence it fol- h the label® R 4S denote th . d
lows at once that the inequalitieg(ry) <0 and's,,(ry) where he fabels, K, an enote the progressive an

=0 are satisfied, i.e., the initial and “final” velocities of the '€Versal types of the directed drift, and the stopping effect,

unforced motion are opposite in sign. Consequently, the rer_espﬂegtw:aly. The mﬂuence of_the asymmetry facfey on
versal type of the directed motion occurred. the “size” of the driving effect is demonstrated by curvas

We summarize by noting that the new types of the unidi—andb’ which satisty relationys(a)>yr(b). The presented

rectional transport of BFs will take place in any case of thecharacteristics evidently show that the unforced transport is

symmetric ac forcing, if the rate function is asymmetrically more “efficient Icfj Tle aslymtrEetry of theh_re;;te function (;S
shaped, i.e., if the relatiopg# 1 holds. The discussed ver- more pronounced. INamely, the cunaswhich correspon

sions of the directed motion are somewhat different from[© the greater asymm*etry pa:ametya{ are more r§p|d, the
6)=s(f§)/sq taken at the fixed am-

those given in the case the cubic polynomial rate functiorficCeleration factoor(fg) = : _
[8]. Namely, the “stopping” effect and the reversal type of plitude of the forcingff increases withyg, in every case
the directed migration of the traveling BFs, as well as théabeled byP, R, andS. Curvesb that correspond to the
progressive dc motion of the initially static BF, were absentlesser asymmetry factoyr are more flattened. As a conse-
in the cubic polynomial case. In particular, the possibility of quence, the reversion of the directed migration of the(&#e

the reversal migration demonstrates that the driven syste@urvesR) is achieved at a larger amplitude of the forcifjy
could arrive at a nontrivial behavior. The “unforced” BF if the asymmetry factoyr was decreased. More exactly, the
propagategon averagetoward the most stable state of the following relation holdsfy — Ry — — Ry, if yg— 1, whence
system. Thus, the usual “scenario” of the transition, “from follows thatf§,— fy . =1/2 if yg— 1. Finally, the “size” of

the most stable toward the less stable state” was brokethe driving effect is large enough; a ten-fold acceleration of
down. We emphasize that the discussed “anomalies,” includBF may be achieved if the initial velocity of the frosg was

ing the stopping effect and the progressive dc motion of thesmall enough. The “effectiveness” of the AFR is demon-
static BFs, vanish at the limigr— 1. The “strange”s—fj strated in Fig. 5 where the—f§ characteristics, taken for
characteristics, as already noted, approach the dependerite particular case of the progressive dc motion of the trav-
's=0 when the asymmetry factoyr tends to unity. It is elling BFs, are presented. As earlier, the acceleration factor
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FIG. 5. The “size” of the driving effect. The parameter values
are (solid lines 1, 2, 3 hg=3, r3=0.05, yg=10(1),5(2),2(3);
(dashed line &) hg~1.3, r3=2, yg=10; (dotted line D)
hg(1a)=hg*(1b)~1.27,r;=20, yg=0.1. Curves 1 andd show
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the directed motion of BFs that are driven by the symmetric
ac forcing are rather different in the cases of the symmetri-
cally and asymmetrically shaped rate functions. The asym-
metrically shaped rate function exhibits the considered front-
ratchet effect, no matter whether or not the Maxwellian
construction of the rate function was satisfied. The progres-
sive, regressive, and reversal types of the unforced migration
of the traveling (initially propagating BFs are generated
with the asymmetrical rate functions. The governing param-
eters that significantly influence the size of the driving effect
are as follows: the asymmetry factgr=r,/r3, the middle
slope coefficient of the rate functioa,, and the balance
factor gy, which indicates the deviation of the Maxwellian
construction from the strictly balanced situation. The maxi-
mal driving effect, the maximal the acceleration facigf,
=Smx/Sp is achieved at the maximal amplitude of the ac

forcing, f=ARf: ., which linearly increases witdAR.

the dependence of the acceleration factor versus the slope coeffrhus, the shift of the mean velocity in nonscaled units,

cient a,; the slope coefficients were taken ag(1)=40a,(1a),
anday(1)=a4(1a), andas(1l)=a3z(1la). Curves & and 1b illus-

Ac(fg)=c(fy) —cg, decreases with the increas&®, if the
amplitudef, of the ac forcing was kept fixed. Finally, the

trate relation (11b), the parameter values Sa.tisfy the relations rlgorously Symmetnc rate func“on, defined by the relation

hg(1a)=hz*(1b) and yg(1a)=y5'(1b).

a(f§) increases withyg (see curves 1, 2,)3The maximal
acceleration factorr,,= o(f},) is of the order of 10. Fur-
thermore, the acceleration facterincreases witha,; the

shift of the mean velocity is more pronounced if the middle

slope coefficient of the rate functiaw, is large(see curves 1
and la in Fig. 5. The characteristic parameters @f-f§
dependencies shown by curves 1 aradviere taken as fol-
lows: a5(1)=40ay(1a), vr(1)=7vyr(1la), and sy(1)

=sp(la). Thus, the asymmetry factors and the initial veloci-
ties of BFs strictly coincide in both cases discussed. Never-

R(u,—Au)=—R(u,+Au), does not exhibit the considered
ratchet effect. The motionless BF, which stays initially at
rest, could gain the unidirectional motion discussed if the
slope coefficients taken at the outer zero points of the rate
function, R’ (u;) and R’ (u3), were different. The unforced
migration of the motionless BF is always directed toward the
domain of that stable state, which is characterized by the
lesser slope coefficieiR’ (u;); herei=1,3.

B. Unidirectional motion induced by asymmetrically
oscillating forcing

theless, the acceleration factors are rather different, cusave 1  Let us touch briefly on the unidirectional transport stimu-

is more flattened. That is, one has that,(1)/omx(18)
=2, from which follows at once that,,(1)/c,,(1la)=12,
in accordance with the discussed relation2\/a,s. Refer-
ring to symmetry relatior{11b) we remind that the charac-

lated by the asymmetric ac forcing. As noted, the considered
AFR does not work if both the rate function and the driver
are rigorously symmetric. Thus, we confine ourselves to the
particular case of the AFR previously labeled (Bra). We

teristic features of the unforced migration are quite similar inassume that the driver is asymmetric, whereas the rate func-

both “contrasymmetric” cases defined by the relations

tion is rigorously symmetric, namely, the relatiohét) #

>1 andyg<1. The unforced transport generated by the con—f(t+T/2), yg=1, andgy=1 hold. Thus, the particular

trasymmetrically shaped rate functionR(yg,hg) and
R(1/yg,1Mhg) satisfies relationgllg and (11b), discussed
above. This property is illustrated by curvea and 1b that
satisfy the relationsyg(la)=1/yg(1b)=10, andhg(1a)
=1Mhg(1b)~1.27. The o—f§ characteristics shown by
curves B and 1b are rigorously symmetric, namely, the re-
lation o(ygr,hgr;fy)=—0c(1llyg,1hg;f§) holds, in accor-
dance with Eq(11b).

case of the initially static BF will be considered. The peri-

odic ac forcingf(t) may be presented as a superposition of
the harmonic functions. For simplicity’s sake we shall focus
on the particular case of the biharmonic forcing described by
the expression

f(t)="forSiN(w1t+ o) + fooSin(wot+ oo+ Ag). (14)

In the considered case of the deterministic AFR the period of

There is little sense in discussing the peculiarities of thehe ac forcingT should be a finite, uniquely defined param-
directed motion stimulated by the differently shaped forcingeter. Hence, the frequencies; and w, are commensurate,
functions f(t). Our calculations, carried out by use of the and the ratio8,=w,/w, is the positive rational number.

harmonic, biharmonic, and square-pulse functiof(s),

Different from the case of the soliton ratch¢tg], the initial

showed that the considered ratchet effect, the shift of th@hasepy, may be chosen to be arbitrary. Indeed, the consid-
mean velocity of the BF is more pronounced with the sym-ered system is essentially dissipativextremely over-

metrically oscillating function$(t) that are characterized by
the flattened “profiles” in the vicinity of the extremels=
+fy.

damped, thus the “memory” is completely lost, i.e., the bi-
harmonic forcing may be treated as adiabatically slow if the
relationT¢> 7 is fulfilled. As previously, here by we denote

We summarize by noting that the characteristic features othe characteristic relaxation time of the system, and the pa-
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rameterT;=min{w; >0, "} indicates the period of the rap-
idly oscillating “mode” of the forcing. In the considered
case of the asymmetrically shaped functfg¢t) the maximal
(fu) and the minimal |f,|) values(“amplitudes”) of the

forcing are different. The “degree” of the asymmetry of the
biharmonic forcing may be evaluated by the asymmetry fac-

tor ¢ defined by the relatiod= —f_A/fN, where byf , we

denote the averagg =0.5(fy + f,,,), and the “normalizing”
factor fy is given by the expressiofy=0.5(fy+|f.,|). The
biharmonic forcing will be referred to as the “positively”
asymmetric one if the parameté is positive, i.e., when the
inequality |f /> f\, holds. Differently, the inequality)r<0

stands for the opposite case of the “negative” asymmetry. In

the case of the rigorously symmet(ie.g., harmonicforcing
one has that-=0. The shape of the periodic functigh4)
depends on the adjustable parameters 8,, fo1, andpB;
=fq,/fo1, and the relative phasep. Clearly, the considered
function f(t) is “almost symmetric,” namely, the relation
6r<<1 holds if either the amplitude$y; and fy, or both
frequenciesv; andw, significantly differ from each other in

PHYSICAL REVIEW E 69, 016103 (2004

qt _ “, d
=", .'
P Ap =nn/4
b %

FIG. 6. The mean velocity of the initially static BF vs the “am-
plitude” of the biharmonic forcing. The parameters are=rz;=1,
B,=2, Bi=1, andA ¢=nm/4, wheren is integer, andsolid linea,
n=1,3) 8z=~0.32; (solid lineb, n=2) §x=~0.78; (dotted linea’;
n=5,7) §g~—0.24; (dotted lineb’; n=6) 6z~ —0.44. Other pa-
rameter values areyg(a)= 7;1(a’)~ 1.32, fa(a)=—"fx(a')
~0.24 andfa(b)=—fa(b')~0.44, ye(b)=y;}(b')~1.78. The

magnitude. The asymmetry of the biharmonic forcing will beinset shows the biharmonic functi¢h4) (n=2; A¢=/2).

distinctly pronounced if the amplituddg, andfy,, and both
frequenciesw; and w, are of the same order in magnitude,
i.e., when the relationg;=1 and 8,=1 hold. Taking the
parameters3;, B,, and Ae to be fixed, we arrive at the
family of “similarly shaped” functions f(t;fy). The
strength of the forcing, the “amplitude” of the similarly
shaped functiori (t;fy;) may be easily modified through the
variation of the parametefr,,. Here we shall deal with the
similarly shaped function$(t). We stress that the ratiB;
=fg/fo1 is kept fixed when the “amplitude” of the asym-
metrically oscillating forcingf(t;fq,) is varied. Finally, the
conditionf ,,<min{—f,,f\}, which guarantees the “global”
stability of the driven BF, now readg,;<(1+ 8;)  f my.

The s—f§, characteristics of the initially motionless BF
that is driven by the asymmetric ac forcifiy) are shown in
Fig. 6. The required parameters were taken as follaws,
=r;=1, B,=2, and Bs=1. The asymmetry factob- was
changed by tuning the relative pha&e in accordance with
the relationA ¢ =nwx/4, wheren=1,2,3,... . We note that the

biharmonic forcing is rigorously symmetric, i.e., the equali-

ties 6g=0 andf(t+T/2)=—f(t) hold if one assumes that

<0 if S*<0. Similarly to what went previously, here ISf
we denote the total area enclosed by the modified rate func-
tion R* (u)=R(u) +f,.

The “size” of the diving effect, i.e., the steepness of
the s—f3, characteristics depends on both the asymmetry
factor| 5¢| and the outer slope parameteis. The accelera-
tion factor 55/ 5f5, increases with ¢| (e.g., see curvea
and b in Fig. 6). The's—fy;, dependencies, taken at the
same asymmetry parametég, strictly coincide, in spite
of the fact that the shapes of the forcing functiof(s)
are slightly differensee curvea, (n=1,3) and curvea’,
(n=5,7) in Fig. §. Furthermore, the relatios( sk ;f3,)
=—5(—6g;f§,) holds: curvesa anda’, as well as those
labeled byb andb’ are rigorously symmetric. The discussed
relation is illustrated by Fig. 7, where the maximal drift ve-
locity of the front,s,,=5(fm,), is plotted versus the relative
phaseAe, for the different slope parameters ; and the
arbitrary 6¢’'s. One can see that the acceleration factor
5sl 85, increases if the slope parametefsandr ; decrease.
This means that the considered driving effect is enhanced if
either the middle slope coefficient, was increased or the

n=0,4,8,... Obviously, the unforced transport of BF disap-hoth outer slope coefficients; and a5 were decreased, in
pears in such a rl_gorously _symmetrlc case. Differently, thehny case of the asymmetric forcif@q. (14)]. Both, the
s— f5, characteristics taken in the other case of the asymmeshape of the biharmonic functiof(t) and the asymmetry

ric forcing (6g#0) show that a dc motion of the initially
static BFs occurredsee curves, b, anda’, b’ in Fig. 6).
More specifically, the following relations>0 if §>0, and
's<0 if 6g<0 hold. Thus, the unforced migration of the
motionless BF is directed toward the stable staeif the
biharmonic forcing is “positively” asymmetric §>0),
and, differently, the penetrated state of the BRujisin the
opposite case of the “negative” asymmetrng(<0). This

factor 6, as noted, are modified through the variation of the
relative phasé\e. The asymmetry factor periodically os-
cillates with Ap (see the dashed curve in Fig. As a con-
sequence, the size of the effect, the shift of the mean velocity
of BF is the periodic function oA¢ (see curves, b, andc).
Finally, the considered driving effect is large enough if the
outer slope coefficients of the rate functian ; are relatively
small. For instance, taking; 3=0.1 anda,=10 we get that

implies that the directed drift of the BF that was driven bys,=0.1. Thus the maximal velocity of the directed migra-
the biharmonic forcing satisfied the modified Maxwellian tion in nonscaled unitx,,, is given by the relationc,,,

rule, given by the following relations>0 if S* >0, ands

=0.1cp, where the quantitgp=2a, indicates the propa-
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FIG. 7. The maximal drift velocit,, (in arbitrary units of the
motionless BF vs the relative phase of the biharmonic fordigg
The parameters ar8,=2 and B;=1. The parameters of the rate
function: yg=1, andr,=r3;=0.1(a),1(b), and 10€). The dashed
line shows the dependence of the asymmetry fagtovs the rela-
tive phaseAe.
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discussed. The preferred direction of the directed motion of
the motionless BF is described by the modified Maxwellian
rule.

IV. CONCLUSIONS

The unidirectional transport of the bistable fronts under
the action of the additive zero-mean ac forcing was consid-
ered within the piecewise linear approximation of the rate
function. The bistable system under the periodically oscillat-
ing zero-mean forcing may serve as a deterministic front
ratchet, irrespective of the symmetry properties of the rate
function. Two separate classes of the deterministic ratchets
based on the broken symmetry @f the rate functiorR(u),
and/or(ii) the external ac forcing(t) have been analyzed. It
was shown that the work of the periodic zero-mean forcing
might be converted into a direct motion of the bistable front,
in both cases of the symmetrically and asymmetrically oscil-
lating forcing. The progressiv@ccelerated regressivede-
celerated, and reversal dc motions of the travellifigitially
propagating BFs that are driven by the symmetrically oscil-

gation velocity of the “pushed” BF, which always propa- lating ac forcing were found with asymmetrically shaped rate
gates at the greatest, “marginal” velocity. Thus, the shift of functions. The initially static BF, if influenced by the peri-
the mean velocity increases withy, very similarly as in the  odic zero-mean forcing, can gain the dc motion discussed if
case of the symmetrically oscillating forcing, discussedeither the rate function or the applied ac forcing is asymmet-
above. ric, namely, if one of the following relationd}(u,—Au)

We summarize by noting that the unforced transport of thexR(u,+ Au) and f(t)# —f(t+T/2), was satisfied. The
BF may occur even in the case of the rigorously symmetriggoverning parameters that influence the “size” of the ratchet
rate function, if the applied zero-mean ac forcihg) is  effect are as follows: the strength of the applied ac forcing,
asymmetric, i.e., when the relatidit) # — f(t+T/2) holds.  both the asymmetry factor and the middle slope coefficient
In the particular case of the biharmonic forcing, which asym-of the rate function, and the balance factor, which indicates
metrically oscillates with time, the progressive, acceleratedhe disbalance of the Maxwellian construction.
dc motion of the initially static BF takes place. The mean The quasistatic approximation left out the question about
velocity of the considered BF depends on both the relativehe dependence of the characteristics of the ratchet versus the
phase of the biharmonic forcindge and the slope coeffi- frequency of the applied ac forcing. This problem, as well as
cients of the rate function. Both the increase of the middlethe other case of the noisy AFR, is analytically tractable by
slope coefficienR’(u,) and the decrease of the outer slopethe use of perturbative technigues, and requires further atten-
coefficientsR’(u;) and R’ (u3) enhance the driving effect tion.
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